ijms-logo

Journal Browser

Journal Browser

Molecular Studies on Microbial Degradation of Emerging Pollutants Toxic to Human Health

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Microbiology".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 650

Special Issue Editor


E-Mail Website
Guest Editor
Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
Interests: environmental microbiology; microbial biochemistry and molecular biology; organic pollutants; enzyme; biodegradation; environmental biotechnology

Special Issue Information

Dear Colleagues,

Emerging pollutants and organic pollutants have led to severe environmental pollution problems. Due to their stable chemical structure, as well as environmental persistence, recalcitrance, bioaccumulation, and high biotoxicity, emerging pollutants and organic pollutants have posed a significant threat to the agricultural ecological environment and human health. Therefore, researching effective methods for degrading environmental pollutants is essential for better protecting agroecological environments and human health. Research on the emerging pollutants and organic pollutants degradation by bacteria and fungi and their enzymes at molecular level is of great significance to governance of ecological environments.

The efficient degradation of environmental pollutants by microorganisms has become a research hotspot in the field of microbial biotechnology. The aim of the Special Issue ”Molecular Studies on Microbial Degradation of Emerging Pollutants Toxic to Human Health” of IJMS is to play a positive and beneficial role in promoting research at the molecular level about the efficient degradation and detoxification of environmental pollutants by microorganisms and their enzymes. The scope of this Special Issue includes molecular research on microbial degradation of emerging pollutants and organic pollutants (including bacteria, fungi, and archaea), microbial enzyme (from bacteria, fungi, and archaea) applied in the degradation of emerging pollutants and organic pollutants, molecular mechanisms of biodegradation of emerging pollutants and organic pollutants, molecular mechanism of biodegradation of emerging pollutants and organic pollutants by bacteria, fungi, archaea, and their enzymes.

Prof. Dr. Yang Yang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microbial degradation
  • emerging pollutants and organic pollutants
  • bacteria
  • fungi
  • enzyme

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 3492 KB  
Article
Efficient Hydrolysis of Dichlorvos in Water by Stenotrophomonas acidaminiphila G1 and Methyl Parathion Hydrolase
by Quyang Mei and Rimao Hua
Int. J. Mol. Sci. 2025, 26(19), 9572; https://doi.org/10.3390/ijms26199572 - 30 Sep 2025
Abstract
Dichlorvos (DDVP) has been used in the management of agricultural pests for a long time. DDVP can cause DNA damage in mammals, and its residues in the environment and food have attracted attention. In this study, we reported a DDVP-degrading strain, Stenotrophomonas acidaminiphila [...] Read more.
Dichlorvos (DDVP) has been used in the management of agricultural pests for a long time. DDVP can cause DNA damage in mammals, and its residues in the environment and food have attracted attention. In this study, we reported a DDVP-degrading strain, Stenotrophomonas acidaminiphila G1, which could degrade DDVP to 20 mg/L with a DT50 of 3.81 min at 37 °C, a pH of 7.0, and a concentration of 1.18 × 1010 colony-forming units (CFUs)/mL. Strain G1’s DDVP degradation products were determined by comparison with standard substances and UPLC-MS/MS analysis. The results showed that dimethyl phosphate (DMPP) was the main metabolite of DDVP, and its toxicity to non-target organisms was significantly lower than that of the parent compound. Furthermore, the key genes for the degradation of DDVP by strain G1 were analyzed using whole-genome sequencing. A methyl parathion hydrolase gene, mpd, was identified, and its activity was verified through prokaryotic expression and enzyme kinetics. The purified enzyme MPD could entirely degrade 20 mg/L DDVP within 1 min. These results not only provide biological resources for the rapid degradation of organophosphorus pesticides but also offer a theoretical basis for the efficient remediation of pesticide residues. Full article
Show Figures

Graphical abstract

41 pages, 11294 KB  
Article
Decolorization and Detoxification of Azo and Triphenylmethane Dyes Damaging Human Health by Crude Laccase from White-Rot Fungus Pleurotus ostreatus Yang1 and Molecular Docking Between Laccase and Structurally Diverse Dyes
by Qingchen Li, Yuguo Feng, Siying Zhuang, Linman Kang and Yang Yang
Int. J. Mol. Sci. 2025, 26(17), 8363; https://doi.org/10.3390/ijms26178363 - 28 Aug 2025
Viewed by 434
Abstract
This study systematically investigated the decolorization efficacy and detoxification effect of crude laccase derived from Pleurotus ostreatus yang1 on azo and triphenylmethane dyes. This research encompassed decolorization efficiencies for 15 dyes (7 azo dyes and 8 triphenylmethane dyes), time course decolorization kinetics, and [...] Read more.
This study systematically investigated the decolorization efficacy and detoxification effect of crude laccase derived from Pleurotus ostreatus yang1 on azo and triphenylmethane dyes. This research encompassed decolorization efficiencies for 15 dyes (7 azo dyes and 8 triphenylmethane dyes), time course decolorization kinetics, and detoxification assessment using rice (Oryza sativa) and wheat (Triticum aestivum) seed germination as phytotoxicity indicators for both single-dye and mixed-dye systems. Molecular docking was employed to elucidate the laccase–dye interaction mechanisms. The results demonstrated that crude laccase from Pleurotus ostreatus yang1 exhibited significant decolorization efficiency and effective detoxification capacity toward both azo dyes and triphenylmethane dyes. It also displayed considerable decolorization efficiency for mixtures of azo and triphenylmethane dyes (mixture of two types of dyes), along with strong detoxification capability against the phytotoxicity of mixed dyes. Crude laccase showed robust continuous batch decolorization capability for azo dyes Alpha-naphthol Orange (α-NO) and Mordant Blue 13 (MB13). Similarly, it achieved high continuous batch decolorization efficiency for triphenylmethane dyes (e.g., Cresol Red, Acid Green 50) while maintaining stable laccase activity throughout the decolorization process. Crude laccase demonstrated excellent reusability and sustainable degradation performance during the continuous batch decolorization. The decolorization of crude laccase could significantly reduce or completely eliminate the phytotoxicity of both single dyes and mixtures of two dyes (pairwise mixtures of different types of dyes, totaling 18 different combinations). The results of molecular docking between the laccase protein and structurally diverse dyes further elucidated the underlying causes and potential mechanisms for variations in the catalytic ability of laccase toward different structural dyes. In summary, crude laccase from Pleurotus ostreatus yang1 possessed great application value and potential for efficiently degrading and detoxifying dye pollutants of different structural types. Full article
Show Figures

Figure 1

Back to TopTop