ijms-logo

Journal Browser

Journal Browser

Special Issue "Unraveling Pancreatic Cancer: Pathogenesis, Development, Diagnostic and Treatment"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: 31 January 2020.

Special Issue Editor

Guest Editor
Prof. Dr. Christian Pilarsky Website E-Mail
Department of Surgery, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
Interests: pancreatic cancer; CRISPR/Cas; diagnosis; therapy; Kras; apoptosis

Special Issue Information

Dear Colleagues,

Pancreatic cancer is, worldwide, the 6th most frequent cause of cancer death. The incidence of this disease is rising worldwide, especially in Asian countries. Of all cancers it has the most abysmal five-year survival rate. This is due to a lack of sufficiently early detection methods and the fact that, if detected, the cancer has already spread, even if it is locally resectable using current imaging standards. While chemotherapy has improved in recent years, medical treatment serves only to prolong the life expectancy of patients, but rarely cures. Analyzing the common genetic changes demonstrate a rather monotone set of mutations, typically in KRAS, SMAD4, TP53 and CDKN2A. This has resulted in a resurrection of the importance of an understanding of epigenetic changes and has led to the introduction of pancreatic cancer subtypes, which might need different treatment approaches. With the advent of organoid culture methods, pre-testing for chemo resistance might be feasible to adjust therapeutic regimens and can be used to establish new genetic signatures for resistance. Together with improved immunooncology approaches like genetically-engineered CAR-T cells, this knowledge of molecular changes in pancreatic cancer might considerably improve survival rates. Looking forward, the area of improvement is vast and, within this Special Issue, we would like to show novel concepts for the diagnosis and treatment of pancreatic cancer based on new molecular biology insights.

Prof. Dr. Christian Pilarsky
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sequencing
  • organoids
  • CRISPR/Cas
  • early detection
  • prognosis
  • imaging
  • surgery
  • chemoresistance

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Interstitial Flow Recapitulates Gemcitabine Chemoresistance in A 3D Microfluidic Pancreatic Ductal Adenocarcinoma Model by Induction of Multidrug Resistance Proteins
Int. J. Mol. Sci. 2019, 20(18), 4647; https://doi.org/10.3390/ijms20184647 - 19 Sep 2019
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most lethal cancers due to a high chemoresistance and poor vascularization, which results in an ineffective systemic therapy. PDAC is characterized by a high intratumoral pressure, which is not captured by current 2D and 3D [...] Read more.
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most lethal cancers due to a high chemoresistance and poor vascularization, which results in an ineffective systemic therapy. PDAC is characterized by a high intratumoral pressure, which is not captured by current 2D and 3D in vitro models. Here, we demonstrated a 3D microfluidic interstitial flow model to mimic the intratumoral pressure in PDAC. We found that subjecting the S2-028 PDAC cell line to interstitial flow inhibits the proliferation, while maintaining a high viability. We observed increased gemcitabine chemoresistance, with an almost nine-fold higher EC50 as compared to a monolayer culture (31 nM versus 277 nM), and an alleviated expression and function of the multidrug resistance protein (MRP) family. In conclusion, we developed a 3D cell culture modality for studying intratissue pressure and flow that exhibits more predictive capabilities than conventional 2D cell culture and is less time-consuming, and more scalable and accessible than animal models. This increase in microphysiological relevance might support improved efficiency in the drug development pipeline. Full article
Show Figures

Figure 1

Open AccessArticle
c-Met and PD-L1 on Circulating Exosomes as Diagnostic and Prognostic Markers for Pancreatic Cancer
Int. J. Mol. Sci. 2019, 20(13), 3305; https://doi.org/10.3390/ijms20133305 - 05 Jul 2019
Abstract
Exosomes are membrane vesicles which offer potential as blood derived biomarkers for malign tumors in clinical practice. Pancreatic cancer is counted among cancer diseases with the highest mortality. The present work seeks to assess whether pancreatic carcinomas release exosomes which express c-Met (proto-oncogene [...] Read more.
Exosomes are membrane vesicles which offer potential as blood derived biomarkers for malign tumors in clinical practice. Pancreatic cancer is counted among cancer diseases with the highest mortality. The present work seeks to assess whether pancreatic carcinomas release exosomes which express c-Met (proto-oncogene mesenchymal-epithelial transition factor) and PD-L1 (programmed cell death 1 ligand 1), and whether the detection of such expression in serum has diagnostic or prognostic meaning for the affected patients. Exosome isolation was performed on culture media of one benign pancreatic cell line and ten pancreatic carcinoma cell lines as well as on serum samples from 55 patients with pancreatic ductal adenocarcinoma (PDAC), 26 patients with chronic pancreatitis and 10 patients with benign serous cyst adenoma of the pancreas. Exosomes were bound to latex beads and stained with antibodies against c-Met or PD-L1. Analysis of fluorescence intensity was performed by flow cytometry. In terms of c-Met, the mean fluorescence intensity of PDAC-patients was significantly higher than the fluorescence intensity of the comparative patients with benign disease (p < 0.001). A diagnostic test based on c-Met resulted in a sensitivity of 70%, a specificity of 85% and a diagnostic odds ratio of 13:2. The specificity of the test can be further improved by combining it with the established tumor marker carbohydrate antigen 19-9 (CA 19-9). In addition, c-Met-positive patients showed a significantly shorter postoperative survival time (9.5 vs. 21.7 months, p < 0.001). In terms of PD-L1, no significant difference between fluorescence intensity of PDAC-patients and comparative patients was detectable. However, PD-L1-positive PDAC-patients also showed a significantly shorter postoperative survival time (7.8 vs. 17.2 months, p = 0.043). Thus, both markers can be considered as negative prognostic factors. Full article
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Current Clinical Strategies of Pancreatic Cancer Treatment and Open Molecular Questions
Int. J. Mol. Sci. 2019, 20(18), 4543; https://doi.org/10.3390/ijms20184543 - 13 Sep 2019
Abstract
Pancreatic cancer is one of the most lethal malignancies and is associated with a poor prognosis. Surgery is considered the only potential curative treatment for pancreatic cancer, followed by adjuvant chemotherapy, but surgery is reserved for the minority of patients with non-metastatic resectable [...] Read more.
Pancreatic cancer is one of the most lethal malignancies and is associated with a poor prognosis. Surgery is considered the only potential curative treatment for pancreatic cancer, followed by adjuvant chemotherapy, but surgery is reserved for the minority of patients with non-metastatic resectable tumors. In the future, neoadjuvant treatment strategies based on molecular testing of tumor biopsies may increase the amount of patients becoming eligible for surgery. In the context of non-metastatic disease, patients with resectable or borderline resectable pancreatic carcinoma might benefit from neoadjuvant chemo- or chemoradiotherapy followed by surgeryPatients with locally advanced or (oligo-/poly-)metastatic tumors presenting significant response to (neoadjuvant) chemotherapy should undergo surgery if R0 resection seems to be achievable. New immunotherapeutic strategies to induce potent immune response to the tumors and investigation in molecular mechanisms driving tumorigenesis of pancreatic cancer may provide novel therapeutic opportunities in patients with pancreatic carcinoma and help patient selection for optimal treatment. Full article
Show Figures

Figure 1

Open AccessReview
Chemoresistance in Pancreatic Cancer
Int. J. Mol. Sci. 2019, 20(18), 4504; https://doi.org/10.3390/ijms20184504 - 11 Sep 2019
Abstract
Pancreatic ductal adenocarcinoma (PDAC), generally known as pancreatic cancer (PC), ranks the fourth leading cause of cancer-related deaths in the western world. While the incidence of pancreatic cancer is displaying a rising tendency every year, the mortality rate has not decreased significantly because [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC), generally known as pancreatic cancer (PC), ranks the fourth leading cause of cancer-related deaths in the western world. While the incidence of pancreatic cancer is displaying a rising tendency every year, the mortality rate has not decreased significantly because of late diagnosis, early metastasis, and limited reaction to chemotherapy or radiotherapy. Adjuvant chemotherapy after surgical resection is typically the preferred option to treat early pancreatic cancer. Although 5-fluorouracil/leucovorin with irinotecan and oxaliplatin (FOLFIRINOX) and gemcitabine/nab-paclitaxel can profoundly improve the prognosis of advanced pancreatic cancer, the development of chemoresistance still leads to poor clinical outcomes. Chemoresistance is multifactorial as a result of the interaction among pancreatic cancer cells, cancer stem cells, and the tumor microenvironment. Nevertheless, more pancreatic cancer patients will benefit from precision treatment and targeted drugs. Therefore, we outline new perspectives for enhancing the efficacy of gemcitabine after reviewing the related factors of gemcitabine metabolism, mechanism of action, and chemoresistance. Full article
Show Figures

Figure 1

Open AccessReview
The Role of Exosomes in Pancreatic Cancer
Int. J. Mol. Sci. 2019, 20(18), 4332; https://doi.org/10.3390/ijms20184332 - 04 Sep 2019
Abstract
Pancreatic cancer remains one of the deadliest cancers in the world, as a consequence of late diagnosis, early metastasis and limited response to chemotherapy, under which conditions the potential mechanism of pancreatic cancer progression requires further study. Exosomes are membrane vesicles which are [...] Read more.
Pancreatic cancer remains one of the deadliest cancers in the world, as a consequence of late diagnosis, early metastasis and limited response to chemotherapy, under which conditions the potential mechanism of pancreatic cancer progression requires further study. Exosomes are membrane vesicles which are important in the progression, metastasis and chemoresistance in pancreatic cancer. Additionally, they have been verified to be potential as biomarkers, targets and drug carriers for pancreatic cancer treatment. Thus, studying the role of exosomes in pancreatic cancer is significant. This paper focuses on the role of exosomes in the proliferation, metastasis and chemoresistance, as well as their potential applications for pancreatic cancer. Full article
Show Figures

Figure 1

Open AccessReview
The Clinical Potential of Oligonucleotide Therapeutics against Pancreatic Cancer
Int. J. Mol. Sci. 2019, 20(13), 3331; https://doi.org/10.3390/ijms20133331 - 06 Jul 2019
Cited by 1
Abstract
Although many diagnostic and therapeutic modalities for pancreatic cancer have been proposed, an urgent need for improved therapeutic strategies remains. Oligonucleotide therapeutics, such as those based on antisense RNAs, small interfering RNA (siRNA), microRNA (miRNA), aptamers, and decoys, are promising agents against pancreatic [...] Read more.
Although many diagnostic and therapeutic modalities for pancreatic cancer have been proposed, an urgent need for improved therapeutic strategies remains. Oligonucleotide therapeutics, such as those based on antisense RNAs, small interfering RNA (siRNA), microRNA (miRNA), aptamers, and decoys, are promising agents against pancreatic cancer, because they can identify a specific mRNA fragment of a given sequence or protein, and interfere with gene expression as molecular-targeted agents. Within the past 25 years, the diversity and feasibility of these drugs as diagnostic or therapeutic tools have dramatically increased. Several clinical and preclinical studies of oligonucleotides have been conducted for patients with pancreatic cancer. To support the discovery of effective diagnostic or therapeutic options using oligonucleotide-based strategies, in the absence of satisfactory therapies for long-term survival and the increasing trend of diseases, we summarize the current clinical trials of oligonucleotide therapeutics for pancreatic cancer patients, with underlying preclinical and scientific data, and focus on the possibility of oligonucleotides for targeting pancreatic cancer in clinical implications. Full article
Show Figures

Figure 1

Open AccessReview
Preclinical Modelling of PDA: Is Organoid the New Black?
Int. J. Mol. Sci. 2019, 20(11), 2766; https://doi.org/10.3390/ijms20112766 - 05 Jun 2019
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a malignancy of the exocrine pancreas with the worst prognosis among all solid tumours, and soon to become the second leading cause of cancer-related deaths. A more comprehensive understanding of the molecular mechanisms underlying this disease is crucial [...] Read more.
Pancreatic ductal adenocarcinoma (PDA) is a malignancy of the exocrine pancreas with the worst prognosis among all solid tumours, and soon to become the second leading cause of cancer-related deaths. A more comprehensive understanding of the molecular mechanisms underlying this disease is crucial to the development of diagnostic tools as well as to the identification of more effective therapies. High-frequency mutations in PDA occur in “undruggable” genes, and molecular subtyping based on bulk transcriptome analysis does not yet nominate valid therapeutic intervention strategies. Genome-wide sequencing studies have also demonstrated a considerable intra- and inter-patient’s genetic heterogeneity, which further complicate this dire scenario. More than in other malignancies, functionalization of the PDA genome and preclinical modelling at the individual patient level appear necessary to substantially improve survival rates for pancreatic cancer patients. Traditional human PDA models, including monolayer cell cultures and patient-derived xenografts, have certainly led to valuable biological insights in the past years. However, those model systems suffer from several limitations that have contributed to the lack of concordance between preclinical and clinical studies for PDA. Pancreatic ductal organoids have recently emerged as a reliable culture system to establish models from both normal and neoplastic pancreatic tissues. Pancreatic organoid cultures can be efficiently generated from small tissue biopsies, which opens up the possibility of longitudinal studies in individual patients. A proof-of-concept study has demonstrated that patient-derived PDA organoids are able to predict responses to conventional chemotherapy. The use of this three-dimensional culture system has already improved our understanding of PDA biology and promises to implement precision oncology by enabling the alignment of preclinical and clinical platforms to guide therapeutic intervention in PDA. Full article
Show Figures

Figure 1

Back to TopTop