ijms-logo

Journal Browser

Journal Browser

Molecular Studies of Refractive Error

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: closed (31 December 2024) | Viewed by 3679

Special Issue Editor


E-Mail Website
Guest Editor
1. School of Chinese Medicine, China Medical University, Taichung 404328, Taiwan
2. Department of Ophthalmology, China Medical University Hospital, Taichung 404327, Taiwan
Interests: eye; cataract; eyelid surgery; ophthalmology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Refractive error is a common vision problem characterized by a mismatch between the focal power of the eye and its axial length. So, the eye cannot clearly focus on images from the outside world. This results in blurred vision, which can often be corrected with eyeglasses, contact lenses, or refractive surgery. The primary types of refractive errors are myopia (nearsightedness), hyperopia (farsightedness), astigmatism, and presbyopia.

In this Special Issue, we aim to discuss the molecular aspects of all types of refractive error, including myopia, hyperopia astigmatism, amblyopia, presbyopia, and amblyopia. In addition, further aims of this Special Issue include focusing on basic study, epidemiology, genetic study, and treatment comparison. We are also interested in receiving studies focused on pathologic problems of refractive error. The submission of original research and review articles corresponding to the molecular and cellular events responsible for refractive error is especially welcome.

Prof. Dr. Hui-Ju Lin
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • myopia
  • hyperopia
  • astigmatism
  • presbyopia
  • refractive error
  • genetics of eye disorders
  • retina

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 9756 KiB  
Article
Experimental Myopia Results in Peripapillary Ganglion Cell and Astrocyte Reorganization with No Functional Implications During Early Development
by Reynolds Kwame Ablordeppey, Carol Ren Lin, Miduturu Srinivas and Alexandra Benavente-Perez
Int. J. Mol. Sci. 2024, 25(24), 13484; https://doi.org/10.3390/ijms252413484 - 16 Dec 2024
Cited by 1 | Viewed by 1299
Abstract
Myopic eye growth induces mechanical stretch, which can lead to structural and functional retinal alterations. Here, we investigated the effect of lens-induced myopic growth on the distribution of retinal ganglion cells (RGCs), glial fibrillary acidic protein (GFAP) expression and intensity, and peripapillary retinal [...] Read more.
Myopic eye growth induces mechanical stretch, which can lead to structural and functional retinal alterations. Here, we investigated the effect of lens-induced myopic growth on the distribution of retinal ganglion cells (RGCs), glial fibrillary acidic protein (GFAP) expression and intensity, and peripapillary retinal nerve fiber layer (ppRNFL) thickness in common marmosets (Callithrix jacchus) induced with myopia continuously for six months, using immunohistochemistry and spectral-domain optical coherence tomography. We also explored the relationship between cellular structural parameters and the photopic negative response (PhNR) using full-field electroretinography. Marmosets induced with myopia for six months developed axial myopia, had a thinner ppRNFL, reduced peripapillary ganglion cell (≈20%) and astrocyte density (≈42%), increased panretinal GFAP expression (≈42%) and nasal mid-periphery staining intensity (≈81%) compared to age-matched controls. Greater degrees of myopia and vitreous elongation were associated with reduced peripapillary RGCs and astrocyte density, and increased GFAP expression and intensity. These cellular structural changes did not show a significant relationship with the features of the PhNR, which remained unchanged. The outcomes of this study suggest that myopia induces a reorganization of the peripapillary inner retina at the cellular level that may not result in measurable functional repercussions at this stage of myopia development. Full article
(This article belongs to the Special Issue Molecular Studies of Refractive Error)
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 4734 KiB  
Review
An Evidence-Based Narrative Review of Scleral Hypoxia Theory in Myopia: From Mechanisms to Treatments
by Qin Xiao, Xiang Zhang, Zhang-Lin Chen, Yun-Yi Zou and Chang-Fa Tang
Int. J. Mol. Sci. 2025, 26(1), 332; https://doi.org/10.3390/ijms26010332 - 2 Jan 2025
Viewed by 1951
Abstract
Myopia is one of the dominant causes of visual impairment in the world. Pathological myopia could even lead to other serious eye diseases. Researchers have reached a consensus that myopia could be caused by both environmental and genetic risk factors. Exploring the pathological [...] Read more.
Myopia is one of the dominant causes of visual impairment in the world. Pathological myopia could even lead to other serious eye diseases. Researchers have reached a consensus that myopia could be caused by both environmental and genetic risk factors. Exploring the pathological mechanism of myopia can provide a scientific basis for developing measures to delay the progression of myopia or even treat it. Recent advances highlight that scleral hypoxia could be an important factor in promoting myopia. In this review, we summarized the role of scleral hypoxia in the pathology of myopia and also provided interventions for myopia that target scleral hypoxia directly or indirectly. We hope this review will aid in the development of novel therapeutic strategies and drugs for myopia. Full article
(This article belongs to the Special Issue Molecular Studies of Refractive Error)
Show Figures

Figure 1

Back to TopTop