ijms-logo

Journal Browser

Journal Browser

The Multiple and Dynamic Faces of Protein Structure: Folded States, Intrinsically Unfolded States, and Aggregates/Fibrils

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Biochemistry".

Deadline for manuscript submissions: closed (15 February 2023) | Viewed by 13647

Special Issue Editor


E-Mail Website
Guest Editor
Faculty of Engineering, Chemistry and Biotechnology, Tottori University, Tottori 683-8503, Japan
Interests: protein science; protein folding; molecular chaperones

Special Issue Information

Dear Colleagues, 

Recent advances in protein structural dynamics in vitro and in vivo have revealed the richness of the protein structural landscape. In order to achieve biological activity, proteins utilize many diverse states, up to and including the unfolded and aggregated states. Moreover, proteins transition between these states dynamically in response to numerous stimuli and at times recruit the help of various chaperone proteins to attain this goal.

In this issue, we search for examples of protein structural dynamism that lead to diverse biological activities. Such examples include the action and effects of molecular chaperones on protein structure and activity, the accumulation and control of fibrillar protein deposits that sometimes lead to unique and complex functions, and the maintenance and utilization of intrinsically unfolded proteins and sequence regions that allow a diversity of cellular function and modulation.

Prof. Dr. Tomohiro Mizobata
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

 

Keywords

  • intrinsically unfolded proteins and regions
  • molecular chaperones
  • amyloid fibrils
  • functional amyloids
  • proteostasis

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 2374 KiB  
Article
Protein Unfolding—Thermodynamic Perspectives and Unfolding Models
by Joachim Seelig and Anna Seelig
Int. J. Mol. Sci. 2023, 24(6), 5457; https://doi.org/10.3390/ijms24065457 - 13 Mar 2023
Cited by 2 | Viewed by 1715
Abstract
We review the key steps leading to an improved analysis of thermal protein unfolding. Thermal unfolding is a dynamic cooperative process with many short-lived intermediates. Protein unfolding has been measured by various spectroscopic techniques that reveal structural changes, and by differential scanning calorimetry [...] Read more.
We review the key steps leading to an improved analysis of thermal protein unfolding. Thermal unfolding is a dynamic cooperative process with many short-lived intermediates. Protein unfolding has been measured by various spectroscopic techniques that reveal structural changes, and by differential scanning calorimetry (DSC) that provides the heat capacity change Cp(T). The corresponding temperature profiles of enthalpy ΔH(T), entropy ΔS(T), and free energy ΔG(T) have thus far been evaluated using a chemical equilibrium two-state model. Taking a different approach, we demonstrated that the temperature profiles of enthalpy ΔH(T), entropy ΔS(T), and free energy ΔG(T) can be obtained directly by a numerical integration of the heat capacity profile Cp(T). DSC thus offers the unique possibility to assess these parameters without resorting to a model. These experimental parameters now allow us to examine the predictions of different unfolding models. The standard two-state model fits the experimental heat capacity peak quite well. However, neither the enthalpy nor entropy profiles (predicted to be almost linear) are congruent with the measured sigmoidal temperature profiles, nor is the parabolic free energy profile congruent with the experimentally observed trapezoidal temperature profile. We introduce three new models, an empirical two-state model, a statistical–mechanical two-state model and a cooperative statistical-mechanical multistate model. The empirical model partially corrects for the deficits of the standard model. However, only the two statistical–mechanical models are thermodynamically consistent. The two-state models yield good fits for the enthalpy, entropy and free energy of unfolding of small proteins. The cooperative statistical–mechanical multistate model yields perfect fits, even for the unfolding of large proteins such as antibodies. Full article
Show Figures

Figure 1

16 pages, 3741 KiB  
Article
The Regulatory Mechanism of Transthyretin Irreversible Aggregation through Liquid-to-Solid Phase Transition
by Guangfei Duan, Yanqin Li, Meimei Ye, Hexin Liu, Ning Wang and Shizhong Luo
Int. J. Mol. Sci. 2023, 24(4), 3729; https://doi.org/10.3390/ijms24043729 - 13 Feb 2023
Viewed by 1534
Abstract
Transthyretin (TTR) aggregation and amyloid formation are associated with several ATTR diseases, such as senile systemic amyloidosis (SSA) and familial amyloid polyneuropathy (FAP). However, the mechanism that triggers the initial pathologic aggregation process of TTR remains largely elusive. Lately, increasing evidence has suggested [...] Read more.
Transthyretin (TTR) aggregation and amyloid formation are associated with several ATTR diseases, such as senile systemic amyloidosis (SSA) and familial amyloid polyneuropathy (FAP). However, the mechanism that triggers the initial pathologic aggregation process of TTR remains largely elusive. Lately, increasing evidence has suggested that many proteins associated with neurodegenerative diseases undergo liquid–liquid phase separation (LLPS) and subsequent liquid-to-solid phase transition before the formation of amyloid fibrils. Here, we demonstrate that electrostatic interactions mediate LLPS of TTR, followed by a liquid-solid phase transition, and eventually the formation of amyloid fibrils under a mildly acidic pH in vitro. Furthermore, pathogenic mutations (V30M, R34T, and K35T) of TTR and heparin promote the process of phase transition and facilitate the formation of fibrillar aggregates. In addition, S-cysteinylation, which is a kind of post-translational modification of TTR, reduces the kinetic stability of TTR and increases the propensity for aggregation, while another modification, S-sulfonation, stabilizes the TTR tetramer and reduces the aggregation rate. Once TTR was S-cysteinylated or S-sulfonated, they dramatically underwent the process of phase transition, providing a foundation for post-translational modifications that could modulate TTR LLPS in the context of pathological interactions. These novel findings reveal molecular insights into the mechanism of TTR from initial LLPS and subsequent liquid-to-solid phase transition to amyloid fibrils, providing a new dimension for ATTR therapy. Full article
Show Figures

Figure 1

22 pages, 2208 KiB  
Article
Effects of Molecular Crowding and Betaine on HSPB5 Interactions, with Target Proteins Differing in the Quaternary Structure and Aggregation Mechanism
by Vera A. Borzova, Svetlana G. Roman, Anastasiya V. Pivovarova and Natalia A. Chebotareva
Int. J. Mol. Sci. 2022, 23(23), 15392; https://doi.org/10.3390/ijms232315392 - 06 Dec 2022
Cited by 1 | Viewed by 1116
Abstract
The aggregation of intracellular proteins may be enhanced under stress. The expression of heat-shock proteins (HSPs) and the accumulation of osmolytes are among the cellular protective mechanisms in these conditions. In addition, one should remember that the cell environment is highly crowded. The [...] Read more.
The aggregation of intracellular proteins may be enhanced under stress. The expression of heat-shock proteins (HSPs) and the accumulation of osmolytes are among the cellular protective mechanisms in these conditions. In addition, one should remember that the cell environment is highly crowded. The antiaggregation activity of HSPB5 and the effect on it of either a crowding agent (polyethylene glycol (PEG)) or an osmolyte (betaine), or their mixture, were tested on the aggregation of two target proteins that differ in the order of aggregation with respect to the protein: thermal aggregation of glutamate dehydrogenase and DTT-induced aggregation of lysozyme. The kinetic analysis of the dynamic light-scattering data indicates that crowding can decrease the chaperone-like activity of HSPB5. Nonetheless, the analytical ultracentrifugation shows the protective effect of HSPB5, which retains protein aggregates in a soluble state. Overall, various additives may either improve or impair the antiaggregation activity of HSPB5 against different protein targets. The mixed crowding arising from the presence of PEG and 1 M betaine demonstrates an extraordinary effect on the oligomeric state of protein aggregates. The shift in the equilibrium of HSPB5 dynamic ensembles allows for the regulation of its antiaggregation activity. Crowding can modulate HSPB5 activity by affecting protein–protein interactions. Full article
Show Figures

Figure 1

18 pages, 5069 KiB  
Article
Formation of Fibrils by the Periplasmic Molecular Chaperone HdeB from Escherichia coli
by Yui Nakata, Yuuto Kitazaki, Hitomi Kanaoka, Erika Shingen, Rina Uehara, Kunihiro Hongo, Yasushi Kawata and Tomohiro Mizobata
Int. J. Mol. Sci. 2022, 23(21), 13243; https://doi.org/10.3390/ijms232113243 - 31 Oct 2022
Viewed by 1308
Abstract
The molecular chaperones HdeA and HdeB of the Escherichia coli (E. coli) periplasm protect client proteins from acid denaturation through a unique mechanism that utilizes their acid denatured states to bind clients. We previously demonstrated that the active, acid-denatured form of HdeA is [...] Read more.
The molecular chaperones HdeA and HdeB of the Escherichia coli (E. coli) periplasm protect client proteins from acid denaturation through a unique mechanism that utilizes their acid denatured states to bind clients. We previously demonstrated that the active, acid-denatured form of HdeA is also prone to forming inactive, amyloid fibril-like aggregates in a pH-dependent, reversible manner. In this study, we report that HdeB also displays a similar tendency to form fibrils at low pH. HdeB fibrils were observed at pH < 3 in the presence of NaCl. Similar to HdeA, HdeB fibrils could be resolubilized by a simple shift to neutral pH. In the case of HdeB, however, we found that after extended incubation at low pH, HdeB fibrils were converted into a form that could not resolubilize at pH 7. Fresh fibrils seeded from these “transformed” fibrils were also incapable of resolubilizing at pH 7, suggesting that the transition from reversible to irreversible fibrils involved a specific conformational change that was transmissible through fibril seeds. Analyses of fibril secondary structure indicated that HdeB fibrils retained significant alpha helical content regardless of the conditions under which fibrils were formed. Fibrils that were formed from HdeB that had been treated to remove its intrinsic disulfide bond also were incapable of resolubilizing at pH 7, suggesting that certain residual structures that are retained in acid-denatured HdeB are important for this protein to recover its soluble state from the fibril form. Full article
Show Figures

Figure 1

12 pages, 3041 KiB  
Article
The Disordered EZH2 Loop: Atomic Level Characterization by 1HN- and 1Hα-Detected NMR Approaches, Interaction with the Long Noncoding HOTAIR RNA
by Csenge Lilla Szabó, Beáta Szabó, Fanni Sebák, Wolfgang Bermel, Agnes Tantos and Andrea Bodor
Int. J. Mol. Sci. 2022, 23(11), 6150; https://doi.org/10.3390/ijms23116150 - 30 May 2022
Cited by 4 | Viewed by 1910
Abstract
The 96-residue-long loop of EZH2 is proposed to play a role in the interaction with long non-coding RNAs (lncRNAs) and to contribute to EZH2 recruitment to the chromatin. However, molecular details of RNA recognition have not been described so far. Cellular studies have [...] Read more.
The 96-residue-long loop of EZH2 is proposed to play a role in the interaction with long non-coding RNAs (lncRNAs) and to contribute to EZH2 recruitment to the chromatin. However, molecular details of RNA recognition have not been described so far. Cellular studies have suggested that phosphorylation of the Thr345 residue localized in this loop influences RNA binding; however, no mechanistic explanation has been offered. To address these issues, a systematic NMR study was performed. As the 1HN-detected NMR approach presents many challenges under physiological conditions, our earlier developed, as well as improved, 1Hα-detected experiments were used. As a result of the successful resonance assignment, the obtained chemical shift values indicate the highly disordered nature of the EZH2 loop, with some nascent helical tendency in the Ser407–Ser412 region. Further investigations conducted on the phosphomimetic mutant EZH2T345D showed that the mutation has only a local effect, and that the loop remains disordered. On the other hand, the mutation influences the cis/trans Pro346 equilibrium. Interactions of both the wild-type and the phosphomimetic mutant with the lncRNA HOTAIR140 (1–140 nt) highlight that the Thr367–Ser375 region is affected. This segment does not resemble any of the previously reported RNA-binding motifs, therefore the identified binding region is unique. As no structural changes occur in the EZH2 loop upon RNA binding, we can consider the protein–RNA interaction as a “fuzzy” complex. Full article
Show Figures

Figure 1

20 pages, 5855 KiB  
Article
Entropy-Enthalpy Compensations Fold Proteins in Precise Ways
by Jiacheng Li, Chengyu Hou, Xiaoliang Ma, Shuai Guo, Hongchi Zhang, Liping Shi, Chenchen Liao, Bing Zheng, Lin Ye, Lin Yang and Xiaodong He
Int. J. Mol. Sci. 2021, 22(17), 9653; https://doi.org/10.3390/ijms22179653 - 06 Sep 2021
Cited by 10 | Viewed by 3377
Abstract
Exploring the protein-folding problem has been a longstanding challenge in molecular biology and biophysics. Intramolecular hydrogen (H)-bonds play an extremely important role in stabilizing protein structures. To form these intramolecular H-bonds, nascent unfolded polypeptide chains need to escape from hydrogen bonding with surrounding [...] Read more.
Exploring the protein-folding problem has been a longstanding challenge in molecular biology and biophysics. Intramolecular hydrogen (H)-bonds play an extremely important role in stabilizing protein structures. To form these intramolecular H-bonds, nascent unfolded polypeptide chains need to escape from hydrogen bonding with surrounding polar water molecules under the solution conditions that require entropy-enthalpy compensations, according to the Gibbs free energy equation and the change in enthalpy. Here, by analyzing the spatial layout of the side-chains of amino acid residues in experimentally determined protein structures, we reveal a protein-folding mechanism based on the entropy-enthalpy compensations that initially driven by laterally hydrophobic collapse among the side-chains of adjacent residues in the sequences of unfolded protein chains. This hydrophobic collapse promotes the formation of the H-bonds within the polypeptide backbone structures through the entropy-enthalpy compensation mechanism, enabling secondary structures and tertiary structures to fold reproducibly following explicit physical folding codes and forces. The temperature dependence of protein folding is thus attributed to the environment dependence of the conformational Gibbs free energy equation. The folding codes and forces in the amino acid sequence that dictate the formation of β-strands and α-helices can be deciphered with great accuracy through evaluation of the hydrophobic interactions among neighboring side-chains of an unfolded polypeptide from a β-strand-like thermodynamic metastable state. The folding of protein quaternary structures is found to be guided by the entropy-enthalpy compensations in between the docking sites of protein subunits according to the Gibbs free energy equation that is verified by bioinformatics analyses of a dozen structures of dimers. Protein folding is therefore guided by multistage entropy-enthalpy compensations of the system of polypeptide chains and water molecules under the solution conditions. Full article
Show Figures

Figure 1

13 pages, 2319 KiB  
Article
Synthetic NAC 71-82 Peptides Designed to Produce Fibrils with Different Protofilament Interface Contacts
by Thomas Näsström, Tobias Dahlberg, Dmitry Malyshev, Jörgen Ådén, Per Ola Andersson, Magnus Andersson and Björn C. G. Karlsson
Int. J. Mol. Sci. 2021, 22(17), 9334; https://doi.org/10.3390/ijms22179334 - 28 Aug 2021
Cited by 3 | Viewed by 1752
Abstract
Alpha-synucleinopathies are featured by fibrillar inclusions in brain cells. Although α-synuclein fibrils display structural diversity, the origin of this diversity is not fully understood. We used molecular dynamics simulations to design synthetic peptides, based on the NAC 71-82 amino acid fragment of α-synuclein, [...] Read more.
Alpha-synucleinopathies are featured by fibrillar inclusions in brain cells. Although α-synuclein fibrils display structural diversity, the origin of this diversity is not fully understood. We used molecular dynamics simulations to design synthetic peptides, based on the NAC 71-82 amino acid fragment of α-synuclein, that govern protofilament contacts and generation of twisted fibrillar polymorphs. Four peptides with structures based on either single or double fragments and capped or non-capped ends were selected for further analysis. We determined the fibrillar yield and the structures from these peptides found in the solution after fibrillisation using protein concentration determination assay and circular dichroism spectroscopy. In addition, we characterised secondary structures formed by individual fibrillar complexes using laser-tweezers Raman spectroscopy. Results suggest less mature fibrils, based on the lower relative β-sheet content for double- than single-fragment peptide fibrils. We confirmed this structural difference by TEM analysis which revealed, in addition to short protofibrils, more elongated, twisted and rod-like fibril structures in non-capped and capped double-fragment peptide systems, respectively. Finally, time-correlated single-photon counting demonstrated a difference in the Thioflavin T fluorescence lifetime profiles upon fibril binding. It could be proposed that this difference originated from morphological differences in the fibril samples. Altogether, these results highlight the potential of using peptide models for the generation of fibrils that share morphological features relevant for disease, e.g., twisted and rod-like polymorphs. Full article
Show Figures

Figure 1

Back to TopTop