ijms-logo

Journal Browser

Journal Browser

Novel Molecular Research on Natural Bioactive Compounds in Human Health

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: 20 May 2025 | Viewed by 3915

Special Issue Editor


E-Mail Website
Guest Editor
Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
Interests: heterocyclic chemistry; drug design and synthesis; fluorinated organic compounds
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue on natural bioactive compounds is intended to offer a wide panorama of the potential applications of these compounds toward all human diseases.

Natural bioactive compounds, which include primary and secondary metabolites, are small molecules produced naturally by several plants. Natural bioactive compounds have a wide range of possible applications and can be useful in the treatment and management of various kinds of human diseases due to their outstanding biological properties. Moreover, bioactive compounds and pharmaceuticals derived from natural products have received increasing attention due to their considerable benefits for human health. This Special Issue will shape the future research direction of important natural products, as well as related bioactive compounds. Our purpose is to feature high-quality, advanced research and knowledge contributed by various research groups working on natural products from around the world.

The scope of this Special Issue encompasses natural products, synthetic chemistry, medicinal chemistry, pharmacology, and other related research fields. Original research and review articles on all topics in these research fields are invited. I look forward to receiving your submissions.

Dr. Antonio Palumbo Piccionello
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aromatic heterocycles
  • bioactive compounds
  • drug design
  • natural bioactive plant products
  • biological and pharmacological activity
  • natural plant drug discovery and development
  • nutraceuticals
  • botanical dietary supplement

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 2197 KiB  
Article
Development of Polymeric Nanoparticles Loaded with Phlomis crinita Extract: A Promising Approach for Enhanced Wound Healing
by Tahsine Kosksi, Paola Bustos-Salgado, Marwa Rejeb, Arem Selmi, Nawres Debbabi, Lupe Carolina Espinoza, Lilian Sosa, Marcelle Silva-Abreu, Ana Cristina Calpena and Leila Chekir-Ghedira
Int. J. Mol. Sci. 2025, 26(5), 2124; https://doi.org/10.3390/ijms26052124 - 27 Feb 2025
Cited by 1 | Viewed by 664
Abstract
The use of nanoparticles improves the stability, solubility, and skin permeability of natural compounds in skincare products. Based on these advantages, this study aimed to incorporate the Phlomis crinita extract into polymeric nanoparticles to improve its topical skin delivery for wound healing purposes. [...] Read more.
The use of nanoparticles improves the stability, solubility, and skin permeability of natural compounds in skincare products. Based on these advantages, this study aimed to incorporate the Phlomis crinita extract into polymeric nanoparticles to improve its topical skin delivery for wound healing purposes. The study involved the preparation of nanoparticles of PLGA and PLGA-PEG (PCE-PLGA-NPs and PCE-PLGA-PEG-NPs) using the solvent displacement method, physicochemical and biopharmaceutical characterization, tolerance studies by the HET-CAM assay and evaluation of skin integrity parameters, and in vitro efficacy via a scratch wound healing experiment. The prepared nanoparticles were nanometer-sized with spherical form and demonstrated an encapsulation efficiency greater than 90%. The major component (luteolin) was released following a kinetic model of hyperbola for PCE-PLGA-PEG-NPs and one-phase exponential association for PCE-PLGA-NPs. Moreover, the important permeability of luteolin skin was observed, especially for PCE-PLGA-PEG-NPs. Both formulations exhibited no irritation and no damaging effects on skin integrity, suggesting their safety. Finally, the results of the scratch wound healing experiment using 3T3-L1 cells revealed significant cell migration and proliferation, with an improved efficacy for PCE-PLGA-PEG-NPs compared to the free extract, demonstrating the potential of this formulation in the treatment of wound healing. Full article
Show Figures

Figure 1

22 pages, 3560 KiB  
Article
Phytochemical Analysis and Antioxidant and Antifungal Activities of Powders, Methanol Extracts, and Essential Oils from Rosmarinus officinalis L. and Thymus ciliatus Desf. Benth.
by Noui Hendel, Djamel Sarri, Madani Sarri, Edoardo Napoli, Antonio Palumbo Piccionello and Giuseppe Ruberto
Int. J. Mol. Sci. 2024, 25(14), 7989; https://doi.org/10.3390/ijms25147989 - 22 Jul 2024
Cited by 8 | Viewed by 2395
Abstract
Chemical residues in food pose health risks such as cancer and liver issues. This has driven the search for safer natural alternatives to synthetic fungicides and preservatives. The aim of this study was to characterize the chemical composition of the essential oils (EO), [...] Read more.
Chemical residues in food pose health risks such as cancer and liver issues. This has driven the search for safer natural alternatives to synthetic fungicides and preservatives. The aim of this study was to characterize the chemical composition of the essential oils (EO), determine the polyphenolic contents, and evaluate the in vitro antioxidant and antifungal activities of methanol extracts (ME), essential oils (EO), and powders from Rosmarinus officinalis L. (rosemary) and Thymus ciliatus (Desf) Benth. (thyme) from the M’sila region, Algeria. The chemical composition of the EOs was determined by GC-MS. R. officinalis EO was composed of 31 components, mainly camphor (41.22%), camphene (18.14%), and α-pinene (17.49%); T. ciliatus EO was composed of 58 components, mainly, in percentage, α-pinene (22.18), myrcene (13.13), β-pinene (7.73), β-caryophyllene (10.21), and germacrene D (9.90). The total phenols and flavonoids were determined spectrophotometrically, and the rosemary ME was found to possess the highest polyphenolic content (127.1 ± 2.40 µg GAE/mg), while the thyme ME had the highest flavonoid content (48.01 ± 0.99 µg QE/mg). The antioxidant activity was assessed using three methods: rosemary ME was the most potent, followed by DPPH (IC50 = 13.43 ± 0.14 µg/mL), β-carotene/linoleic acid (IC50 = 39.01 ± 2.16 μg/mL), and reducing power (EC50 = 15.03 ± 1.43 µg/mL). Antifungal activity was assessed for 32 pathogenic and foodborne fungi. Four methods were applied to the solid medium. Incorporating the powdered plant into the culture medium (at 10%) reduced the fungal growth to greater than 50% in 21.88% and 6.25% of all fungal isolates, for R. officinalis and T. ciliatus, respectively. The ME, applied by the well diffusion method (0.1 g/mL), was less effective. Different concentrations of EO were tested. Incorporating the EO into the culture medium (1500 μL/L) inhibited 50% of the molds to levels of 50 and 75% for R. officinalis and T. ciliatus, respectively, with the complete inhibition of four fungi. Fumigated EO (15 μL) inhibited 65% of the molds to levels of 65 and 81.25% for R. officinalis and T. ciliatus, respectively, with the complete inhibition of five fungi. There was little to no sporulation in conjunction with the inhibition. Our results revealed some of the potential of the studied plants to fight foodborne molds and presented their promising characteristics as a source of alternatives to chemical pesticides and synthetic preservatives. Further studies are needed to find adequate application techniques in the food safety area. Full article
Show Figures

Figure 1

Back to TopTop