ijms-logo

Journal Browser

Journal Browser

Novel Natural Compound for Wound and Tissue Repair and Regeneration: 4th Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: 31 March 2026 | Viewed by 210

Special Issue Editor

Special Issue Information

Dear Colleagues,

This Special Issue is a continuation of our previous successful Special Issue “Novel Natural Compound for Wound and Tissue Repair and Regeneration: 3rd Edition”(https://www.mdpi.com/journal/ijms/special_issues/1B6SQG2597).

Wound healing is of great importance for skin medicine, with particular interest focused on natural compounds.

Numerous studies have recognized the potential use of natural products as wound-healing agents in terms of their antibacterial, antioxidant, immunomodulatory, and pro-collagen synthesis properties.

The therapeutic virtues of natural compounds have been rediscovered by the medical profession and are gaining acceptance with regard to treating wounds, ulcers, and other surface infections.

Despite the extensive literature available on the clinical uses of natural compounds, the subjacent mechanisms remain largely unknown. With the growing interest in the utilization of natural products and the belief that they are safer than standard therapies, it is crucial that we enhance our knowledge of their efficacy and side effects.

Thus, original articles and reviews that investigate the positive effects of natural compounds on wound healing and the cellular and molecular mechanisms that are involved are welcome in this Special Issue.

Dr. Elia Ranzato
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • wound repair
  • tissue regeneration
  • natural compounds
  • phytochemicals
  • molecular mechanisms

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 709 KB  
Article
Analysis of the Phenolic Profile of Chelidonium majus L. and Its Combination with Sericin: Balancing Antimicrobial Activity and Cytocompatibility
by Ana Borges, José Luis Ordóñez-Díaz, Yara Aquino, José Manuel Moreno-Rojas, María Luisa Martín Calvo, Josiana A. Vaz and Ricardo C. Calhelha
Int. J. Mol. Sci. 2025, 26(20), 9911; https://doi.org/10.3390/ijms26209911 - 11 Oct 2025
Viewed by 168
Abstract
The incorporation of bioactive natural compounds into biomedical applications offers a promising route to enhance therapeutic efficacy while supporting sustainability. In this study, we investigated the synergistic potential of Sericin, a silk-derived biopolymer, and Chelidonium majus L. (C. majus), a medicinal [...] Read more.
The incorporation of bioactive natural compounds into biomedical applications offers a promising route to enhance therapeutic efficacy while supporting sustainability. In this study, we investigated the synergistic potential of Sericin, a silk-derived biopolymer, and Chelidonium majus L. (C. majus), a medicinal plant with a diverse phenolic profile, in relation to biological activities relevant for wound care and infection control. A combined experimental strategy was applied, integrating detailed chemical characterization of C. majus extracts with antimicrobial and cytocompatibility assays across different Sericin–plant extract ratios (1:1, 1:2, 2:2, and 2:1). Phytochemical analysis identified and quantified 57 phenolic compounds, including high levels of flavonoids (quercetin, kaempferol, isorhamnetin) and phenolic acids (caffeic and ferulic acid). Salicylic acid (123.6 µg/g), feruloyltyramine (111.8 µg/g), and pinocembrin (98.4 µg/g) were particularly abundant, compounds previously reported to disrupt microbial membranes and impair bacterial viability. These metabolites correlated with the strong antimicrobial activity of C. majus against Gram-positive strains (MIC = 5–10 mg/mL). In combination with Sericin, antimicrobial performance was ratio-dependent, with higher proportions of C. majus (2:1) retaining partial inhibitory effects. Cytocompatibility assays with HFF1 fibroblasts demonstrated low antiproliferative activity across most formulations (GI50 > 400 µg/mL), supporting their potential safety in topical applications. Collectively, the results indicate a concentration-dependent interaction between C. majus phenolics and the Sericin protein matrix, reinforcing their suitability as candidates for natural-based wound healing materials. Importantly, the valorization of Sericin, an underutilized byproduct of the silk industry, together with a widely accessible medicinal plant, underscores the ecological and economic sustainability of this approach. Overall, this work supports the exploration of the development of biomaterials with potential for advancing tissue repair and wound management. Full article
Show Figures

Graphical abstract

Back to TopTop