ijms-logo

Journal Browser

Journal Browser

25th Anniversary of IJMS: Updates and Advances in Macromolecules

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Macromolecules".

Deadline for manuscript submissions: 20 August 2026 | Viewed by 9507

Special Issue Editors


E-Mail Website
Guest Editor
School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
Interests: polymer chemistry; polymer synthesis; catalytic olefin polymerization; organometallic catalysts; metal-catalyzed polymerization; polyolefins
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
Interests: structural biology; cancers; epigenetics; demethylation; transcription regulation; viral polymerase; drug discovery; protein crystallization; drug design
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

IJMS is celebrating its 25th anniversary, becoming an established and trusted journal that publishes scientific molecular research on chemistry, biochemistry, molecular cell biology, and medicine. On this occasion, the Macromolecules Section of the IJMS invites scholars active in research on the chemical, biological, and medicinal aspects of natural and synthetic macromolecules to contribute to the “25th Anniversary of IJMS: Updates and Advances in Macromolecules” Special Issue.

This Special Issue of the IJMS will cover the latest developments, advances, and applications of macromolecules in the fields of chemistry, biology, and medicine over recent decades. Contributions to this Special Issue are expected to address and decipher the key roles that biological macromolecules such as proteins, lipids, carbohydrates, and nucleic acids play in processes essential to life, such as structural support, genetic information transfer, and energy storage. Due to their large and complex structures, both synthetically and naturally occurring macromolecules are frequently applied in healthcare chemistry as carriers in drug delivery and biomaterial engineering; contributions that address these topics are welcomed. Finally, macromolecules are seeing increasing interest as sustainable materials in circular chemistry. Research contributions that report on the design and development of biodegradable and eco-friendly macromolecular materials are encouraged to be submitted to this 25th anniversary Special Issue of the IJMS.

Prof. Dr. Haiyang Gao
Prof. Dr. Salah-Eddine Stiriba
Prof. Dr. Zhongzhou Chen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • macromolecules
  • monomers
  • lipids
  • peptides
  • proteins
  • carbohydrates
  • polysaccharides
  • nucleic acids
  • modification
  • functionalization
  • structure–property relationship

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

30 pages, 4775 KB  
Article
Uncovering Major Structural and Functional Features of Methyl-Coenzyme M Reductase (MCR) from Methanobrevibacter ruminantium in Complex with Two Substrates
by Han-Ha Chai, Woncheoul Park and Dajeong Lim
Int. J. Mol. Sci. 2026, 27(2), 995; https://doi.org/10.3390/ijms27020995 - 19 Jan 2026
Viewed by 168
Abstract
Structural insights into methyl-coenzyme M reductase from Methanobrevibacter ruminantium (M. ruminantium) has implications for methane mitigation strategies. Methanogenesis in ruminants is a major contributor to global greenhouse gas emissions, primarily driven by the rumen archaeon M. ruminantium. Central to this [...] Read more.
Structural insights into methyl-coenzyme M reductase from Methanobrevibacter ruminantium (M. ruminantium) has implications for methane mitigation strategies. Methanogenesis in ruminants is a major contributor to global greenhouse gas emissions, primarily driven by the rumen archaeon M. ruminantium. Central to this process is methyl-coenzyme M reductase (Mcr), an enzyme that catalyzes the final step of methane production. Despite its significance as a chemogenetic target for methane mitigation, the high-resolution structure of M. ruminantium Mcr has remained elusive. Here, we employed homology modeling and CDOCKER simulations within the CHARMM force field to elucidate the structural and functional features of the M. ruminantium Mcr/ligand complexes. We characterized two distinct states: the reduced Mcroxi-silent state bound to HS-CoM and CoB-SH, and the oxidized Mcrsilent state bound to the heterodisulfide CoM-S-S-CoB. Alanine-scanning mutagenesis identified 71 and 62 key residues per active site for each state, respectively, revealing the fundamental determinants of structural stability and substrate selectivity on the Ni-F430 cofactor. Furthermore, structure-based pharmacophore modeling defined essential features (AAADDNNN and AAADDNN) that drive ligand binding. These findings provide a high-resolution molecular framework for the rational design of specific Mcr inhibitors, offering a robust starting point for developing broad-spectrum strategies to suppress enteric methane emissions. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Macromolecules)
Show Figures

Figure 1

13 pages, 1600 KB  
Article
LIMK2-1 Is a Phosphorylation-Dependent Inhibitor of Protein Phosphatase-1 Catalytic Subunit and Myosin Phosphatase Holoenzyme
by Andrea Kiss, Emese Tóth, Zsófia Bodogán, Mohamad Mahfood, Zoltán Kónya and Ferenc Erdődi
Int. J. Mol. Sci. 2025, 26(15), 7347; https://doi.org/10.3390/ijms26157347 - 30 Jul 2025
Viewed by 701
Abstract
The C-kinase-activated protein phosphatase-1 (PP1) inhibitor of 17 kDa (CPI-17) is a specific inhibitor of the PP1 catalytic subunit (PP1c) and the myosin phosphatase (MP) holoenzyme. CPI-17 requires the phosphorylation of Thr38 in the peptide segment 35ARV(P)TVKYDRREL46 for inhibitory activity. CPI-17 [...] Read more.
The C-kinase-activated protein phosphatase-1 (PP1) inhibitor of 17 kDa (CPI-17) is a specific inhibitor of the PP1 catalytic subunit (PP1c) and the myosin phosphatase (MP) holoenzyme. CPI-17 requires the phosphorylation of Thr38 in the peptide segment 35ARV(P)TVKYDRREL46 for inhibitory activity. CPI-17 regulates myosin phosphorylation in smooth muscle contraction and the tumorigenic transformation of several cell lines via the inhibition of MP. A phosphospecific antibody (anti-CPI-17pThr38) against the phosphorylation peptide was used to determine the phosphorylation levels in cells. We found that phospho-CPI-17 and its closely related proteins are not present in HeLa and MCF7 cells after inducing phosphorylation by inhibiting phosphatases with calyculin A. In contrast, cross-reactions of proteins in the 40–220 kDa range with anti-CPI-17pThr38 were apparent. Searching the protein database for similarities to the CPI-17 phosphorylation sequence revealed several proteins with 42–75% sequence identities. The LIMK2-1 isoform emerged as a possible PP1 inhibitor. Experiments with Flag-LIMK2-1 overexpressed in tsA201 cells proved that LIMK2-1 interacts with PP1c isoforms and is phosphorylated predominantly by protein kinase C. Phosphorylated LIMK2-1 inhibits PP1c and the MP holoenzyme with similar potencies (IC50 ~28–47 nM). In conclusion, our results suggest that LIMK2-1 is a novel phosphorylation-dependent inhibitor of PP1c and MP and may function as a CPI-17-like phosphatase inhibitor in cells where CPI-17 is present but not phosphorylated upon phosphatase inhibition. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Macromolecules)
Show Figures

Figure 1

Review

Jump to: Research

29 pages, 1588 KB  
Review
Targeting Mitochondrial Function in Plasmodium falciparum: Insight into Antimalarial Drugs and the Emerging Role of Saccharomyces cerevisiae as a Model System
by Sara Greco, Graziana Assalve, Paola Lunetti, Kassoum Kayentao, Antoine Dara, Dario Scaramuzzi, Vincenzo Zara and Alessandra Ferramosca
Int. J. Mol. Sci. 2025, 26(18), 9150; https://doi.org/10.3390/ijms26189150 - 19 Sep 2025
Viewed by 1737
Abstract
Malaria remains a major global health threat, particularly in low- and middle-income countries, where children under five and pregnant women are most vulnerable. Despite notable progress in reducing malaria-related morbidity and mortality, the rise of drug-resistant Plasmodium falciparum strains continues to undermine eradication [...] Read more.
Malaria remains a major global health threat, particularly in low- and middle-income countries, where children under five and pregnant women are most vulnerable. Despite notable progress in reducing malaria-related morbidity and mortality, the rise of drug-resistant Plasmodium falciparum strains continues to undermine eradication efforts. In this context, the parasite’s mitochondrion has emerged as a promising target for novel antimalarial therapies due to its essential role in parasite viability throughout all life cycle stages and its marked structural and biochemical differences from the human counterpart. This review highlights recent advances in the development of compounds targeting mitochondrial function in P. falciparum and discusses the utility of Saccharomyces cerevisiae as a powerful model organism for antimalarial drug discovery. Owing to its shared eukaryotic features, genetic tractability, and capacity for heterologous expression of parasite mitochondrial proteins, S. cerevisiae offers a cost-effective and experimentally accessible platform for elucidating drug mechanisms and accelerating therapeutic development. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Macromolecules)
Show Figures

Figure 1

25 pages, 3583 KB  
Review
Hyaluronic Acid and Its Synthases—Current Knowledge
by Klaudia Palenčárová, Romana Köszagová and Jozef Nahálka
Int. J. Mol. Sci. 2025, 26(15), 7028; https://doi.org/10.3390/ijms26157028 - 22 Jul 2025
Cited by 4 | Viewed by 6058
Abstract
Hyaluronic acid (HA) is a linear heteropolysaccharide that naturally occurs in vertebrates. Thanks to its unique physico-chemical properties, it is involved in many key processes in living organisms. These biological activities provide the basis for its broad applications in cosmetics, medicine, and the [...] Read more.
Hyaluronic acid (HA) is a linear heteropolysaccharide that naturally occurs in vertebrates. Thanks to its unique physico-chemical properties, it is involved in many key processes in living organisms. These biological activities provide the basis for its broad applications in cosmetics, medicine, and the food industry. The molecular weight of HA might vary significantly, as it can be less than 10 kDa or reach more than 6000 kDa. There is a strong correlation between variations in its molecular weight and bioactivities, as well as with various pathological processes. Consequently, monodispersity is a crucial requirement for HA production, together with purity and safety. Common industrial approaches, such as extraction from animal sources and microbial fermentation, have limits in fulfilling these requests. Research and protein engineering with hyaluronic acid synthases can provide a strong tool for the production of monodisperse HA. One-pot multi-enzyme reactions that include in situ nucleotide phosphate regeneration systems might represent the future of HA production. In this review, we explore the current knowledge about HA, its production, hyaluronic synthases, the most recent stage of in vitro enzymatic synthesis research, and one-pot approaches. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Macromolecules)
Show Figures

Figure 1

Back to TopTop