ijms-logo

Journal Browser

Journal Browser

Unravelling Functional Biology in Retinal Dystrophies and Eye Disease

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: 30 January 2026 | Viewed by 704

Special Issue Editors


E-Mail Website
Guest Editor
Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy
Interests: oxidative stress; inherited retinal dystrophies (IRDs); retinitis pigmentosa (RP); cerebral cavernous malformations (CCMs); trimethylaminuria (TMAU)
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
2. Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Via Michele Miraglia, 90139 Palermo, Italy
Interests: DNA; DNA extraction; DNA sequencing; electrophoresis; DNA gel electrophoresis; DNA amplification

Special Issue Information

Dear Colleagues,

Retinal dystrophies and complex ocular diseases represent ideal models for dissecting the interplay between genotype and phenotype through integrative molecular approaches. Recent advances in next-generation sequencing, high-dimensional single-cell profiling, and spatial omics have revolutionized our ability to map the cellular and regulatory landscapes of the retina in both health and disease.

This Special Issue invites original research and comprehensive reviews that combine experimental and bioinformatic strategies to unravel the functional biology of retinal pathologies. Topics of interest include large-scale transcriptomic and epigenomic studies, network-based functional inference, machine learning for variant effect prediction, and multi-omics integration for pathway discovery.

We particularly encourage contributions employing systems biology pipelines, the in silico modeling of retinal signaling circuits, CRISPR-based perturbation screens, and validation in cutting-edge biological models such as induced pluripotent stem cell (iPSC)-derived retinal organoids and gene-edited animal models.

By bringing together computational and experimental perspectives, this Special Issue aims to promote a deeper mechanistic understanding of retinal degeneration and support the development of targeted, data-driven therapeutic strategies.

We welcome contributions from interdisciplinary teams at the intersection of molecular ophthalmology, computational biology, and translational science. We look forward to your contributions.

Dr. Luigi Donato
Dr. Simona Alibrandi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • precision ophthalmology
  • inherited retinal diseases
  • functional genomics
  • multi-omics approaches
  • photoreceptor degeneration
  • retinal organoids and iPSC models
  • bioinformatics and systems biology
  • genotype–phenotype correlations
  • RNA therapeutics and gene editing
  • early and late biomarkers of retinal disease

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

29 pages, 1843 KB  
Article
QMR® and Patient Blood-Derived Secretome Modulate RPE microRNA Networks Under Oxidative Stress
by Simona Alibrandi, Domenico Mordà, Concetta Scimone, Angela D’ascola, Federica Aliquò, Alessandro Pozzato, Sergio Zaccaria Scalinci, Rosalia D’Angelo, Antonina Sidoti and Luigi Donato
Int. J. Mol. Sci. 2025, 26(17), 8614; https://doi.org/10.3390/ijms26178614 - 4 Sep 2025
Viewed by 569
Abstract
Oxidative stress destabilizes microRNA homeostasis in the retinal pigment epithelium (RPE), driving apoptosis and the epithelial-to-mesenchymal transition, which contribute to age-related macular degeneration. We investigated whether Quantum Molecular Resonance (QMR®) electrostimulation, alone or combined with Patient Blood-Derived (PBD) secretoma, can reprogram [...] Read more.
Oxidative stress destabilizes microRNA homeostasis in the retinal pigment epithelium (RPE), driving apoptosis and the epithelial-to-mesenchymal transition, which contribute to age-related macular degeneration. We investigated whether Quantum Molecular Resonance (QMR®) electrostimulation, alone or combined with Patient Blood-Derived (PBD) secretoma, can reprogram the RPE miRNome and mitigate stress-induced damage. Human ARPE-19 cells were exposed to tert-butyl-hydroperoxide and treated with QMR®, PBD secretome, or their combination. The deep sequencing of small RNAs at 24 h and 72 h, followed by differential expression and pathway enrichment analyses, delineated treatment-driven miRNA signatures. Oxidative stress deregulated > 50 miRNAs, enriching pro-apoptotic, fibrotic, and inflammatory pathways. QMR® restored roughly 40% of these miRNAs and upregulated additional cytoprotective species such as miR-590-3p, a known regulator of the NF-κB and NLRP3 pathways according to validated target databases. While these observations suggest the potential involvement of inflammatory and stress-related cascades, functional assays will be required to directly confirm such effects. Secretome treatment preferentially increased anti-inflammatory miR-146a-5p and regenerative miR-204-5p while suppressing pro-fibrotic let-7f-5p. Combined QMR® + secretome triggered the broadest miRNA response, normalizing over two-thirds of stress-altered miRNAs. These changes are predicted to influence antioxidant, anti-apoptotic, and anti-fibrotic pathways, although they did not translate into additional short-term cytoprotection compared with QMR® alone. These data indicate that QMR® and PBD secretome modulate complementary miRNA programs that converge on stress response networks. This broader molecular reprogramming may reflect regulatory complementarity, but functional validation is needed to determine whether it provides benefits beyond those observed with QMR® alone. These findings offer molecular insights into potential non-invasive, cell-free strategies for retinal degeneration, although in vivo validation will be required before any clinical translation to Age-Related Macular Degeneration (AMD) therapy. Full article
(This article belongs to the Special Issue Unravelling Functional Biology in Retinal Dystrophies and Eye Disease)
Show Figures

Figure 1

Back to TopTop