ijms-logo

Journal Browser

Journal Browser

Plant Resilience: Insights into Abiotic and Biotic Stress Adaptations

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 20 October 2025 | Viewed by 3238

Special Issue Editor

Tea Science Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Interests: plant secondary metabolite analysis; GABA (y-Aminobutyric acid) accumulation in tea plant; plant gene functional characterization; correlation anslysis between geographical origins and multi-elements spatial distribution in soil–tea plantation ecosystems; quality control of chemicals and biosafety evaluation in tea
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Plants, as a source of food, fuel, and oxygen, are the basis of life on Earth. As sessile organisms, plants have to endure a wide variety of environmental stresses during their entire lifecycle. To cope with this, they have developed complex responses to abiotic and biotic stresses, which involve multiple interactions between hormones and other signaling molecules. In the acclimatization and cultivation process of the plant, the morphological, physiological, metabolic, and molecular levels have been changed to adapt to different stresses. Understanding the molecular mechanism of stress biology for plants is of great importance for growth and development.

Dr. Xujun Zhu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plants
  • basis of life
  • environmental stress
  • complex responses
  • molecular mechanisms
  • abiotic and biotic stress adaptations

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 3625 KiB  
Article
Comparative Study on the Effects of Selenium-Enriched Yeasts with Different Selenomethionine Contents on Gut Microbiota and Metabolites
by Zijian Zhang, Li Zhu, Hongtao Zhang, Dan Yu, Zhongwei Yin and Xiaobei Zhan
Int. J. Mol. Sci. 2025, 26(7), 3315; https://doi.org/10.3390/ijms26073315 - 2 Apr 2025
Viewed by 351
Abstract
Selenium is an essential trace element for human health, but it mainly exists in an inorganic form that cannot be directly absorbed by the body. Brewer’s yeast efficiently converts inorganic selenium into bioavailable organic selenium, making selenium-enriched yeast highly significant for human health [...] Read more.
Selenium is an essential trace element for human health, but it mainly exists in an inorganic form that cannot be directly absorbed by the body. Brewer’s yeast efficiently converts inorganic selenium into bioavailable organic selenium, making selenium-enriched yeast highly significant for human health research. Selenomethionine (SeM) is an important indicator for evaluating the quality of selenium-enriched yeast. Brewer’s yeast was selected as the experimental subject, and the digestion of this yeast (Brewer’s yeast) was simulated using an in vitro biomimetic gastrointestinal reactor to evaluate the effects of selenium-enriched yeast with various SeM levels on the gut flora of a healthy population. The experimental design comprised normal yeast (control group, OR), yeast containing moderate SeM levels (selenium-enriched group, SE), yeast containing high SeM levels (high-selenium group, MU), and a commercially available group comprising selenium-enriched yeast tablets (MA). The MU group exhibited a significantly higher concentration of short-chain fatty acids than the OR and MA groups during 48 h of fermentation, with significant differences observed (p < 0.05). Sequencing results revealed that the MU group showed significantly increased relative abundances of Bacteroidetes and Actinobacteria, while exhibiting a decreased ratio of Firmicutes to Bacteroidetes, which may simultaneously affect multiple metabolic pathways in vivo. These findings support the theory that selenium-enriched yeast with a high SeM has a more positive effect on human health compared with traditional yeast and offer new ideas for the development and application of selenium-enriched yeast. Full article
(This article belongs to the Special Issue Plant Resilience: Insights into Abiotic and Biotic Stress Adaptations)
Show Figures

Figure 1

19 pages, 13945 KiB  
Article
Analysis of the Transcriptome Provides Insights into the Photosynthate of Maize Response to Salt Stress by 5-Aminolevulinic Acid
by Ying Jiang, Min Li, Yumei Qian, Hao Rong, Tao Xie, Shanshan Wang, Hong Zhao, Liangli Yang, Qingyun Wang and Yanyong Cao
Int. J. Mol. Sci. 2025, 26(2), 786; https://doi.org/10.3390/ijms26020786 - 17 Jan 2025
Viewed by 697
Abstract
Salt stress is a significant environmental factor that impedes maize growth and yield. Exogenous 5-aminolevulinic acid (ALA) has been shown to mitigate the detrimental effects of various environmental stresses on plants. However, its regulatory role in the photosynthesis mechanisms of maize seedlings under [...] Read more.
Salt stress is a significant environmental factor that impedes maize growth and yield. Exogenous 5-aminolevulinic acid (ALA) has been shown to mitigate the detrimental effects of various environmental stresses on plants. However, its regulatory role in the photosynthesis mechanisms of maize seedlings under salt stress remains poorly understood. Transcriptome sequencing and physiological index measurements were conducted on the leaves of the “Zhengdan 958” cultivar subjected to three different treatments. Differential expression analysis revealed 4634 differentially expressed genes (DEGs), including key transcription factor (TF) families such as NAC, MYB, WRKY, and MYB-related, across two comparisons (SS_vs_CK and ALA_SS_vs_SS). Significant enrichment was observed in the metabolic pathways related to porphyrin metabolism, photosynthesis-antenna proteins, photosynthesis, and carbon fixation in photosynthetic organisms. ALA treatment modulated the expression of photosynthesis-related genes, increased photosynthetic pigment content, and enhanced the activities of superoxide dismutase (SOD) and catalase (CAT), thereby mitigating the excessive accumulation of reactive oxygen species (ROS). Furthermore, ALA increased starch content under salt stress. These findings establish a foundational understanding of the molecular mechanisms through which ALA regulates photosynthesis under salt stress in maize seedlings. Collectively, exogenous ALA enhances maize’s salt tolerance by regulating photosynthesis-related pathways. Full article
(This article belongs to the Special Issue Plant Resilience: Insights into Abiotic and Biotic Stress Adaptations)
Show Figures

Figure 1

17 pages, 2649 KiB  
Article
Functional Characterization of OsCSN1 in the Agronomic Trait Control of Rice Seedlings Under Far-Red Light
by Yanxi Liu, Hua Zeng, Yuqing Shang, Hexin Zhang, Tongtong Jiao, Le Yin, Jinyuan Yang, Miao Xu, Jingmei Lu, Ming Wu and Liquan Guo
Int. J. Mol. Sci. 2025, 26(2), 522; https://doi.org/10.3390/ijms26020522 - 9 Jan 2025
Viewed by 710
Abstract
The COP9 signalosome (CSN) is a highly conserved multi-subunit protein complex, with CSN1 being its largest and most conserved subunit. The N-terminal function of CSN1 plays a pivotal and intricate role in plant photomorphogenesis and seedling development. Moreover, CSN is essential for far-red [...] Read more.
The COP9 signalosome (CSN) is a highly conserved multi-subunit protein complex, with CSN1 being its largest and most conserved subunit. The N-terminal function of CSN1 plays a pivotal and intricate role in plant photomorphogenesis and seedling development. Moreover, CSN is essential for far-red light-mediated photomorphogenesis in seedlings, but the function of OsCSN1 in seedling growth and development under far-red light conditions has not been determined. This study investigates the function of OsCSN1 under far-red light through phenotypic analysis of wild type and OsCSN1 mutant seedlings. Additionally, the effect of the N-terminal region of OsCSN1 on rice seedling growth and development was examined. The addition of exogenous hormone gibberellin (GA3) and gibberellin synthesis inhibitor paclobutrazol (PAC) resulted in notable changes in phenotypes and the expression of key proteins, including CUL4 and SLR1. The findings indicate that OsCSN1 functions as a positive regulator of plant height under far-red light and inhibits root elongation. Under far-red light, OsCSN1 integrates into the COP9 complex and regulates the nuclear localization of COP1. Through its interaction with CUL4 in the CULLIN-RING family, OsCSN1 facilitates the ubiquitin-mediated degradation of SLR1, thereby influencing the growth of rice seedlings. The regulatory function of OsCSN1 in seedling growth and development under far-red light predominantly relies on the 32 amino acids of its N-terminal region. The results of this study can provide new ideas for rice breeding and genetic improvement. Based on the study of key regulatory factors such as OsCSN1, new varieties that can make better use of far-red light signals can be cultivated to enhance crop adaptability and productivity. Full article
(This article belongs to the Special Issue Plant Resilience: Insights into Abiotic and Biotic Stress Adaptations)
Show Figures

Figure 1

22 pages, 4221 KiB  
Article
Pulsed Electric Field (PEF) Treatment Results in Growth Promotion, Main Flavonoids Extraction, and Phytochemical Profile Modulation of Scutellaria baicalensis Georgi Roots
by Kajetan Grzelka, Adam Matkowski, Grzegorz Chodaczek, Joanna Jaśpińska, Anna Pawlikowska-Bartosz, Wojciech Słupski, Dorota Lechniak, Małgorzata Szumacher-Strabel, Segun Olorunlowu, Karolina Szulc, Adam Cieślak and Sylwester Ślusarczyk
Int. J. Mol. Sci. 2025, 26(1), 100; https://doi.org/10.3390/ijms26010100 - 26 Dec 2024
Viewed by 804
Abstract
This study aims to explore the effect of pulsed electric field (PEF) treatment as a method very likely to result in reversible electroporation of Scutellaria baicalensis Georgi underground organs, resulting in increased mass transfer and secondary metabolites leakage. PEF treatment with previously established [...] Read more.
This study aims to explore the effect of pulsed electric field (PEF) treatment as a method very likely to result in reversible electroporation of Scutellaria baicalensis Georgi underground organs, resulting in increased mass transfer and secondary metabolites leakage. PEF treatment with previously established empirically tailored parameters [E = 0.3 kV/cm (U = 3 kV, d = 10 cm), t = 50 µs, N = 33 f = 1 Hz] was applied 1–3 times to S. baicalensis roots submerged in four different Natural Deep Eutectic Solvents (NADES) media (1—choline chloride/xylose (1:2) + 30% water, 2—choline chloride/glucose (1:2) + 30% water, 3—choline chloride/ethylene glycol (1:2), and 4—tap water (EC = 0.7 mS/cm). Confocal microscopy was utilized to visualize the impact of PEF treatment on the root cells in situ. As a result of plant cell membrane permeabilization, an extract containing major active metabolites was successfully acquired in most media, achieving the best results using medium 1 and repeating the PEF treatment twice (baicalein <LOQ, baicalin 12.85 µg/mL, wogonin 2.15 µg/mL, and wogonoside 3.01 µg/mL). Wogonin concentration in NADES media was on par with the control (plants harvested on the day of the experiment, ultrasound-mediated methanolic extraction, Cwogonin = 2.15 µg/mL). After successful extraction, PEF treatment allowed the plants to continue growing, with the lowest survival rate across treated groups being 60%. Additionally, an enhancement in plant growth parameters (length and fresh mass of the roots) and significant changes in the S. baicalensis root phytochemical profile were also observed. Full article
(This article belongs to the Special Issue Plant Resilience: Insights into Abiotic and Biotic Stress Adaptations)
Show Figures

Figure 1

Back to TopTop