Rice Adaptation to Abiotic Stresses Caused by Soil Inorganic Elements
Abstract
1. Introduction
2. Physiological Effects of Toxic Elements
3. Improving Tolerance to Salt and Heavy Metals Through the Exploitation of Genetic Diversity and Germplasm Resources
4. Mapping and Advanced Breeding to Sustain Tolerance
4.1. Grain
4.2. Seedling Stage
4.3. Reproductive Stage
4.4. Salinity-Tolerance Source from Common Wild Rice (Oryza rufipogon Griff)
5. Enhancing Salt and Heavy Metal Tolerance in Rice via Transgenic and Genome Editing Approaches
6. The Role of Microbial Communities in Enhancing Rice Resilience to Inorganic Soil Contaminants
6.1. Microbial-Assisted Detoxification and Phytoremediation Mechanisms in Rice for Heavy Metals
6.2. Microbial Support Against Salinity Stress
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACDD | 1-aminocyclopropane-1-carboxylate deaminase |
AKR | Aldo-keto reductase |
As | Arsenic |
APX | Ascorbate peroxidase |
ATP | Adenosine triphosphate |
B | Boron |
BC1F2 | Back-cross F2 generation |
BC3F2 | Third back-cross F2 generation |
bZIP | Basic leucine zipper |
Ca | Calcium |
CAT | Catalase |
Cd | Cadmium |
Cl | Chlorine |
CO2 | Carbon dioxide |
Cr | Chromium |
CRISPR/Cas9 | Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9 |
Cu | Copper |
EPSs | ExoPolySaccharides |
eQTL | Expression QTL |
ETC | Electron transport chain |
F0 | Parental generation |
F1 | First generation, from 2 parental lines |
Fe | Iron |
GSH | Glutathione reductase |
GWAS | Genome wide association study |
H2O2 | Hydrogen peroxide |
Hg | Mercury |
HMs | Heavy metals |
IAA | Indole acetic acid |
IL | Introgression line |
K | Potassium |
MAGIC | Multi-parent Advanced Generation InterCross |
MDA | Malondialdehyde |
Mg | Magnesium |
Mn | Manganese |
Mo | Molybdenum |
N | Nitrogen |
Na | Sodium |
NAC | NAM, ATAF1/2, CUC2 |
NaCl | Sodium chloride |
NIL | Near isogenic line |
P | Phosphorus |
Pb | Lead |
PGPB | Plant growth-promoting bacteria |
QTL | Quantitative trait locus |
RIL | Recombinant inbred line |
RNAi | RNA interference |
ROS | Reactive oxygen species |
Se | Selenium |
SNP | Single-nucleotide polymorphism |
SOD | Super-oxide dismutase |
SSSLs | Single-segment substitution lines |
SynCom | Synthetic community |
TF | Transcription factor |
Tl | Thallium |
Zn | Zinc |
References
- Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database; FAO: Rome, Italy, 2025; Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf (accessed on 15 May 2025).
- Von Grebmer, K.; Saltzman, A.; Birol, E.; Wiesmann, D.; Prasai, N.; Yin, S.; Yohannes, Y.; Menon, P.; Thompson, J.; Sonntag, A.; et al. 2014 Global Hunger Index: The Challenge of Hidden Hunger; IFPRI Welthungerhilfe, and Concern Worldwide: Bonn, Germany; Washington, DC, USA; Dublin, Ireland, 2014. [Google Scholar]
- Shahid, M.; Khalid, S.; Abbas, G.; Shahid, N.; Nadeem, M.; Sabir, M.; Aslam, M.; Dumat, C. Heavy Metal Stress and Crop Productivity. In Crop Production and Global Environmental Issues; Hakeem, K.R., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–25. [Google Scholar] [CrossRef]
- Ponce, K.S.; Guo, L.; Leng, Y.; Meng, L.; Ye, G. Advances in Sensing, Response and Regulation Mechanism of Salt Tolerance in Rice. Int. J. Mol. Sci. 2021, 22, 2254. [Google Scholar] [CrossRef] [PubMed]
- Abdelraheem, A.; Esmaeili, N.; O’Connell, M.; Zhang, J. Progress and Perspective on Drought and Salt Stress Tolerance in Cotton. Ind. Crops Prod. 2019, 130, 118–129. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-L.; Flowers, T.J.; Wang, S.-M. Mechanisms of Sodium Uptake by Roots of Higher Plants. Plant Soil 2010, 326, 45–60. [Google Scholar] [CrossRef]
- FAO. Status and Prospects of Global Salt-Affected Soils; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; Available online: https://openknowledge.fao.org/items/3fba222a-e820-4d1e-a736-12cbef53d699 (accessed on 15 May 2025).
- Du, T.P. Food safety and strategy in China. Product. Res. 2005, 6, 139–141. [Google Scholar]
- Liu, W.-R.; Zeng, D.; She, L.; Su, W.-X.; He, D.-C.; Wu, G.-Y.; Ma, X.-R.; Jiang, S.; Jiang, C.-H.; Ying, G.-G. Comparisons of Pollution Characteristics, Emission Situations, and Mass Loads for Heavy Metals in the Manures of Different Livestock and Poultry in China. Sci. Total Environ. 2020, 734, 139023. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Dong, Y.; Yang, Y.; Toor, G.S.; Zhang, X. Changes in Heavy Metal Contents in Animal Feeds and Manures in an Intensive Animal Production Region of China. J. Environ. Sci. 2013, 25, 2435–2442. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Li, Y.; Zhu, Z.; Wang, F.; Liu, X.; Zhang, W.; Xiao, M.; Li, G.; Ding, J.; Chen, J.; et al. Soil Health Evaluation Approaches along a Reclamation Consequence in Hangzhou Bay, China. Agric. Ecosyst. Environ. 2022, 337, 108045. [Google Scholar] [CrossRef]
- Chen, X.; Yip, N.Y. Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Reverse Osmosis: Energy and Operating Pressure Analysis. Environ. Sci. Technol. 2018, 52, 2242–2250. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.K.; Tiwari, S.; Misra, P. Overexpression of WssgtL3.1 Gene from Withania Somnifera Confers Salt Stress Tolerance in Arabidopsis. Plant Cell Rep. 2021, 40, 2191–2204. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-F.; Han, G.-L.; Yang, Z.-R.; Li, Y.-X.; Wang, B.-S. Plant Salinity Sensors: Current Understanding and Future Directions. Front. Plant Sci. 2022, 13, 859224. [Google Scholar] [CrossRef] [PubMed]
- Burssens, S.; Himanen, K.; Van De Cotte, B.; Beeckman, T.; Van Montagu, M.; Inzé, D.; Verbruggen, N. Expression of Cell Cycle Regulatory Genes and Morphological Alterations in Response to Salt Stress in Arabidopsis Thaliana. Planta 2000, 211, 632–640. [Google Scholar] [CrossRef] [PubMed]
- West, G.; Inzé, D.; Beemster, G.T.S. Cell Cycle Modulation in the Response of the Primary Root of Arabidopsis to Salt Stress. Plant Physiol. 2004, 135, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Kul, R.; Ekinci, M.; Turan, M.; Ors, S.; Yildirim, E. How Abiotic Stress Conditions Affects Plant Roots. In Plant Roots; Yildirim, E., Turan, M., Ekinci, M., Eds.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Naz, M.; Dai, Z.; Hussain, S.; Tariq, M.; Danish, S.; Khan, I.U.; Qi, S.; Du, D. The Soil pH and Heavy Metals Revealed Their Impact on Soil Microbial Community. J. Environ. Manag. 2022, 321, 115770. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, M.; Irshad, M.; Sher, S.; Hayat, F.; Ashraf, A.; Masood, S.; Bibi, S.; Ali, J.; Waseem, M. Relationship of Selected Soil Properties with the Micronutrients in Salt-Affected Soils. Land 2022, 11, 845. [Google Scholar] [CrossRef]
- Acosta, J.A.; Jansen, B.; Kalbitz, K.; Faz, A.; Martínez-Martínez, S. Salinity Increases Mobility of Heavy Metals in Soils. Chemosphere 2011, 85, 1318–1324. [Google Scholar] [CrossRef]
- Sun, L.; Zheng, M.; Liu, H.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Water Management Practices Affect Arsenic and Cadmium Accumulation in Rice Grains. Sci. World J. 2014, 2014, 596438. [Google Scholar] [CrossRef] [PubMed]
- Kumarathilaka, P.; Seneweera, S.; Meharg, A.; Bundschuh, J. Arsenic Speciation Dynamics in Paddy Rice Soil-Water Environment: Sources, Physico-Chemical, and Biological Factors—A Review. Water Res. 2018, 140, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.N.; Villada, A.; Deacon, C.; Raab, A.; Figuerola, J.; Green, A.J.; Feldmann, J.; Meharg, A.A. Greatly Enhanced Arsenic Shoot Assimilation in Rice Leads to Elevated Grain Levels Compared to Wheat and Barley. Environ. Sci. Technol. 2007, 41, 6854–6859. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-H.; McGrath, S.P.; Zhao, F.-J. Rice Is More Efficient in Arsenite Uptake and Translocation than Wheat and Barley. Plant Soil 2010, 328, 27–34. [Google Scholar] [CrossRef]
- Eynard, A.; Lal, R.; Wiebe, K. Crop Response in Salt-Affected Soils. J. Sustain. Agric. 2005, 27, 5–50. [Google Scholar] [CrossRef]
- Jo, G.; Todorov, T.I. Distribution of Nutrient and Toxic Elements in Brown and Polished Rice. Food Chem. 2019, 289, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Meharg, A.A.; Lombi, E.; Williams, P.N.; Scheckel, K.G.; Feldmann, J.; Raab, A.; Zhu, Y.; Islam, R. Speciation and Localization of Arsenic in White and Brown Rice Grains. Environ. Sci. Technol. 2008, 42, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Meng, B.; Feng, X.; Qiu, G.; Anderson, C.W.N.; Wang, J.; Zhao, L. Localization and Speciation of Mercury in Brown Rice with Implications for Pan-Asian Public Health. Environ. Sci. Technol. 2014, 48, 7974–7981. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Wang, P.; Zhang, S.; Dai, J.; Chen, H.-P.; Lombi, E.; Howard, D.L.; Van Der Ent, A.; Zhao, F.-J.; Kopittke, P.M. Chemical Speciation and Distribution of Cadmium in Rice Grain and Implications for Bioavailability to Humans. Environ. Sci. Technol. 2020, 54, 12072–12080. [Google Scholar] [CrossRef] [PubMed]
- Norton, G.J.; Williams, P.N.; Adomako, E.E.; Price, A.H.; Zhu, Y.; Zhao, F.-J.; McGrath, S.; Deacon, C.M.; Villada, A.; Sommella, A.; et al. Lead in Rice: Analysis of Baseline Lead Levels in Market and Field Collected Rice Grains. Sci. Total Environ. 2014, 485–486, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Chen, J.; Wang, H.; Ji, E.; Su, X.; Zhu, M.; Xiang, X.; Gong, L.; Zhou, Q.; Xiao, X.; et al. The transcription factor OsNAC5 regulates cadmium accumulation in rice. Ecotoxicol. Environ. Saf. 2024, 285, 117102. [Google Scholar] [CrossRef]
- Pooam, M.; El-Ballat, E.M.; Jourdan, N.; Ali, H.M.; Hano, C.; Ahmad, M.; El-Esawi, M.A. SNAC3 transcription factor enhances arsenic stress tolerance and grain yield in rice (Oryza sativa L.) through regulating physio-biochemical mechanisms, stress-responsive genes, and cryptochrome 1b. Plants 2023, 12, 2731. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Long, Y.; Huang, J.; Xia, J. OsNAC45 is involved in ABA response and salt tolerance in rice. Rice 2020, 13, 79. [Google Scholar] [CrossRef] [PubMed]
- Rai, G.K.; Mishra, S.; Chouhan, R.; Mushtaq, M.; Chowdhary, A.A.; Rai, P.K.; Kumar, R.R.; Kumar, P.; Perez-Alfocea, F.; Colla, G.; et al. Plant salinity stress, sensing, and its mitigation through WRKY. Front. Plant Sci. 2023, 14, 1238507. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Sun, Z.; Zhou, X. WRKY Transcription Factors in Response to Metal Stress in Plants: A Review. Int. J. Mol. Sci. 2024, 25, 10952. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Zhou, Z.; Yi, Y.; Chen, G. Transcriptome analysis reveals the roles of stem nodes in cadmium transport to rice grain. BMC Genom. 2020, 21, 127. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Mao, B.; Ou, S.; Wang, W.; Liu, L.; Wu, Y.; Chu, C.; Wang, X. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol. Biol. 2014, 84, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Lakra, N.; Nutan, K.K.; Singla-Pareek, S.L.; Pareek, A. A unique bZIP transcription factor imparting multiple stress tolerance in Rice. Rice 2019, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xu, K.; Chen, S.; Li, T.; Xia, H.; Chen, L.; Liu, H.; Luo, L. A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice. BMC Plant Biol. 2019, 19, 260. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, M.; Rajakaruna, N.; Rizwan, M.; Madawala, H.M.S.P.; Ok, Y.S.; Vithanage, M. Heavy Metal-Induced Oxidative Stress on Seed Germination and Seedling Development: A Critical Review. Environ. Geochem. Health 2019, 41, 1813–1831. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Bhuyan, M.H.M.; Zulfiqar, F.; Raza, A.; Mohsin, S.; Mahmud, J.; Fujita, M.; Fotopoulos, V. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef] [PubMed]
- Anwen, X.; Danting, C.; Chin, L.W.; Zhihong, Y. Root Morphology and Anatomy Affect Cadmium Translocation and Accumulation in Rice. Rice Sci. 2021, 28, 594–604. [Google Scholar] [CrossRef]
- Shan, C.; Shi, C.; Liang, X.; Zu, Y.; Wang, J.; Li, B.; Chen, J. Variations in Root Characteristics and Cadmium Accumulation of Different Rice Varieties under Dry Cultivation Conditions. Plants 2024, 13, 2457. [Google Scholar] [CrossRef] [PubMed]
- Bahmani, R.; Kim, D.; Modareszadeh, M.; Hwang, S. Cadmium Enhances Root Hair Elongation through Reactive Oxygen Species in Arabidopsis. Environ. Exp. Bot. 2022, 196, 104813. [Google Scholar] [CrossRef]
- Kanu, A.S.; Ashraf, U.; Mo, Z.; Fuseini, I.; Mansaray, L.R.; Duan, M.; Pan, S.; Tang, X. Cadmium Uptake and Distribution in Fragrant Rice Genotypes and Related Consequences on Yield and Grain Quality Traits. J. Chem. 2017, 2017, 1405878. [Google Scholar] [CrossRef]
- Muehe, E.M.; Wang, T.; Kerl, C.F.; Planer-Friedrich, B.; Fendorf, S. Rice Production Threatened by Coupled Stresses of Climate and Soil Arsenic. Nat. Commun. 2019, 10, 4985. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Hao, P.; Cheng, Y.; Ahmed, I.M.; Cao, F. Effect of Combined Application of Lead, Cadmium, Chromium and Copper on Grain, Leaf and Stem Heavy Metal Contents at Different Growth Stages in Rice. Ecotoxicol. Environ. Saf. 2018, 162, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, A.; Yamaji, N.; Yokosho, K.; Ma, J.F. Nramp5 Is a Major Transporter Responsible for Manganese and Cadmium Uptake in Rice. Plant Cell 2012, 24, 2155–2167. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F.; Yamaji, N.; Mitani, N.; Xu, X.-Y.; Su, Y.-H.; McGrath, S.P.; Zhao, F.-J. Transporters of Arsenite in Rice and Their Role in Arsenic Accumulation in Rice Grain. Proc. Natl. Acad. Sci. USA 2008, 105, 9931–9935. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.J.; Ma, J.F.; Meharg, A.A.; McGrath, S.P. Arsenic Uptake and Metabolism in Plants. New Phytol. 2009, 181, 777–794. [Google Scholar] [CrossRef] [PubMed]
- Lemos Batista, B.; Nigar, M.; Mestrot, A.; Alves Rocha, B.; Barbosa Júnior, F.; Price, A.H.; Raab, A.; Feldmann, J. Identification and Quantification of Phytochelatins in Roots of Rice to Long-Term Exposure: Evidence of Individual Role on Arsenic Accumulation and Translocation. J. Exp. Bot. 2014, 65, 1467–1479. [Google Scholar] [CrossRef] [PubMed]
- Uraguchi, S.; Tanaka, N.; Hofmann, C.; Abiko, K.; Ohkama-Ohtsu, N.; Weber, M.; Kamiya, T.; Sone, Y.; Nakamura, R.; Takanezawa, Y.; et al. Phytochelatin Synthase Has Contrasting Effects on Cadmium and Arsenic Accumulation in Rice Grains. Plant Cell Physiol. 2017, 58, 1730–1742. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, N.; Lee, S.-H.; Lee, D.-G.; Lee, H.; Lee, S.W.; Bahk, J.D.; Lee, B.-H. Physiological and Protein Profiles Alternation of Germinating Rice Seedlings Exposed to Acute Cadmium Toxicity. Comptes Rendus. Biol. 2007, 330, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Dubey, R.S. Cadmium Elevates Level of Protein, Amino Acids and Alters Activity of Proteolytic Enzymes in Germinating Rice Seeds. Acta Physiol. Plant 1998, 20, 189–196. [Google Scholar] [CrossRef]
- He, J.; Ren, Y.; Zhu, C.; Jiang, D. Effects of Cadmium Stress on Seed Germination, Seedling Growth and Seed Amylase Activities in Rice (Oryza sativa). Rice Sci. 2008, 15, 319–325. [Google Scholar] [CrossRef]
- Shri, M.; Kumar, S.; Chakrabarty, D.; Trivedi, P.K.; Mallick, S.; Misra, P.; Shukla, D.; Mishra, S.; Srivastava, S.; Tripathi, R.D.; et al. Effect of Arsenic on Growth, Oxidative Stress, and Antioxidant System in Rice Seedlings. Ecotoxicol. Environ. Saf. 2009, 72, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wolfe, K.; Cobb, G.P. Exposure to Copper Oxide Nanoparticles and Arsenic Causes Intergenerational Effects on Rice (Oryza sativa Japonica Koshihikari) Seed Germination and Seedling Growth. Environ. Toxicol. Chem. 2019, 38, 1978–1987. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Choudhuri, M.A. Amelioration of Lead and Mercury Effects on Germination and Rice Seedling Growth by Antioxidants. Biologia Plant. 1998, 41, 469–473. [Google Scholar] [CrossRef]
- Khaliq, M.A.; James, B.; Chen, Y.H.; Ahmed Saqib, H.S.; Li, H.H.; Jayasuriya, P.; Guo, W. Uptake, Translocation, and Accumulation of Cd and Its Interaction with Mineral Nutrients (Fe, Zn, Ni, Ca, Mg) in Upland Rice. Chemosphere 2019, 215, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Pagliano, C.; Raviolo, M.; Dalla Vecchia, F.; Gabbrielli, R.; Gonnelli, C.; Rascio, N.; Barbato, R.; La Rocca, N. Evidence for PSII Donor-Side Damage and Photoinhibition Induced by Cadmium Treatment on Rice (Oryza sativa L.). J. Photochem. Photobiol. B Biol. 2006, 84, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Asgher, M.; Ahmed, S.; Sehar, Z.; Gautam, H.; Gandhi, S.G.; Khan, N.A. Hydrogen Peroxide Modulates Activity and Expression of Antioxidant Enzymes and Protects Photosynthetic Activity from Arsenic Damage in Rice (Oryza sativa L.). J. Hazard. Mater. 2021, 401, 123365. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Nahar, K.; Hasanuzzaman, M.; Fujita, M. Manganese-Induced Cadmium Stress Tolerance in Rice Seedlings: Coordinated Action of Antioxidant Defense, Glyoxalase System and Nutrient Homeostasis. Comptes Rendus. Biol. 2016, 339, 462–474. [Google Scholar] [CrossRef] [PubMed]
- Abbas, G.; Murtaza, B.; Bibi, I.; Shahid, M.; Niazi, N.K.; Khan, M.I.; Amjad, M.; Hussain, M.; Natasha, N. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. Int. J. Environ. Res. Public Health 2018, 15, 59. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Thokchom, S.D.; Kapoor, R. Arbuscular Mycorrhiza Improves Photosynthesis and Restores Alteration in Sugar Metabolism in Triticum aestivum L. Grown in Arsenic Contaminated Soil. Front. Plant Sci. 2021, 12, 640379. [Google Scholar] [CrossRef] [PubMed]
- Thongnok, S.; Siripornadulsil, W.; Thanwisai, L.; Siripornadulsil, S. As(III)-Oxidizing and Plant Growth-Promoting Bacteria Increase the Starch Biosynthesis-Related Enzyme Activity, 2-AP Levels, and Grain Quality of Arsenic-Stressed Rice Plants. BMC Plant Biol. 2024, 24, 672. [Google Scholar] [CrossRef] [PubMed]
- Clemens, S.; Ma, J.F. Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods. Annu. Rev. Plant Biol. 2016, 67, 489–512. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Limmer, M.A.; Seyfferth, A.L. How Manganese Affects Rice Cadmium Uptake and Translocation in Vegetative and Mature Plants. Plant Soil 2024, 504, 941–954. [Google Scholar] [CrossRef]
- Meharg, A.A.; Hartley-Whitaker, J. Arsenic Uptake and Metabolism in Arsenic Resistant and Nonresistant Plant Species. New Phytol. 2002, 154, 29–43. [Google Scholar] [CrossRef]
- Hussain, S.; Khaliq, A.; Noor, M.A.; Tanveer, M.; Hussain, H.A.; Hussain, S.; Shah, T.; Mehmood, T. Metal Toxicity and Nitrogen Metabolism in Plants: An Overview. In Carbon and Nitrogen Cycling in Soil; Datta, R., Meena, R.S., Pathan, S.I., Ceccherini, M.T., Eds.; Springer: Singapore, 2020; pp. 221–248. [Google Scholar] [CrossRef]
- Yeo, A.R.; Yeo, M.E.; Flowers, T.J. The Contribution of an Apoplastic Pathway to Sodium Uptake by Rice Roots in Saline Conditions. J. Exp. Bot. 1987, 38, 1141–1153. [Google Scholar] [CrossRef]
- Ren, Z.-H.; Gao, J.-P.; Li, L.-G.; Cai, X.-L.; Huang, W.; Chao, D.-Y.; Zhu, M.-Z.; Wang, Z.-Y.; Luan, S.; Lin, H.-X. A Rice Quantitative Trait Locus for Salt Tolerance Encodes a Sodium Transporter. Nat. Genet. 2005, 37, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.A.; Abdullah-Zawawi, M.-R.; Razalli, I.I.; Sukiran, N.L.; Uddin Md, I.; Zainal, Z. Overexpression of Rice High-Affinity Potassium Transporter Gene OsHKT1;5 Improves Salinity and Drought Tolerance in Arabidopsis. Mol. Biol. Rep. 2025, 52, 40. [Google Scholar] [CrossRef] [PubMed]
- El Mahi, H.; Pérez-Hormaeche, J.; De Luca, A.; Villalta, I.; Espartero, J.; Gámez-Arjona, F.; Fernández, J.L.; Bundó, M.; Mendoza, I.; Mieulet, D.; et al. A Critical Role of Sodium Flux via the Plasma Membrane Na+/H+ Exchanger SOS1 in the Salt Tolerance of Rice. Plant Physiol. 2019, 180, 1046–1065. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, B.; Shabala, L.; Zhou, M.; Venkataraman, G.; Solis, C.A.; Page, D.; Chen, Z.-H.; Shabala, S. Comparing Essentiality of SOS1-Mediated Na+ Exclusion in Salinity Tolerance between Cultivated and Wild Rice Species. Int. J. Mol. Sci. 2022, 23, 9900. [Google Scholar] [CrossRef] [PubMed]
- Neang, S.; Goto, I.; Skoulding, N.S.; Cartagena, J.A.; Kano-Nakata, M.; Yamauchi, A.; Mitsuya, S. Tissue-Specific Expression Analysis of Na+ and Cl− Transporter Genes Associated with Salt Removal Ability in Rice Leaf Sheath. BMC Plant Biol. 2020, 20, 502. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, A.; Nakamura, A.; Tagiri, A.; Tanaka, H.; Miyao, A.; Hirochika, H.; Tanaka, Y. Function, Intracellular Localization and the Importance in Salt Tolerance of a Vacuolar Na+/H+ Antiporter from Rice. Plant Cell Physiol. 2004, 45, 146–159. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, P.; Ranathunge, K.; Franke, R.; Prakash, H.S.; Schreiber, L.; Mathew, M.K. The Role of Root Apoplastic Transport Barriers in Salt Tolerance of Rice (Oryza sativa L.). Planta 2009, 230, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Apel, K.; Hirt, H. REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed]
- Amirjani, M.R. Effect of NaCl on Some Physiological Parameters of Rice. Eur. J. Biol. Sci. 2010, 3, 6–16. [Google Scholar]
- Wang, X.; Zhang, H.; Shao, L.-Y.; Yan, X.; Peng, H.; Ouyang, J.-X.; Li, S.-B. Expression and Function Analysis of a Rice OsHSP40 Gene under Salt Stress. Genes Genom. 2019, 41, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Frukh, A.; Siddiqi, T.O.; Khan, M.I.R.; Ahmad, A. Modulation in Growth, Biochemical Attributes and Proteome Profile of Rice Cultivars under Salt Stress. Plant Physiol. Biochem. 2020, 146, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Rahman, M.A.; Corpas, F.J.; Rahman, M.M.; Jahan, M.S.; Liu, X.; Ghimire, S.; Alabdallah, N.M.; Wassem, M.; Alharbi, B.M.; et al. Salt Stress Tolerance in Rice (Oryza sativa L.): A Proteomic Overview of Recent Advances and Future Prospects. Plant Stress 2024, 11, 100307. [Google Scholar] [CrossRef]
- Rodríguez Coca, L.I.; García González, M.T.; Gil Unday, Z.; Jiménez Hernández, J.; Rodríguez Jáuregui, M.M.; Fernández Cancio, Y. Effects of Sodium Salinity on Rice (Oryza sativa L.) Cultivation: A Review. Sustainability 2023, 15, 1804. [Google Scholar] [CrossRef]
- Ashraf, M.; Harris, P.J.C. Photosynthesis under Stressful Environments: An Overview. Photosynthesis 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Zuo, G.; Feng, N.; Wang, S.; Yin, L.; Zheng, D. Rice (Oryza sativa L.) Exhibits Differential Responses to Salt Stress and Salt Shock in Electron Transfer Efficiency. Plant Stress 2024, 12, 100481. [Google Scholar] [CrossRef]
- Tester, M. Na+ Tolerance and Na+ Transport in Higher Plants. Ann. Bot. 2003, 91, 503–527. [Google Scholar] [CrossRef] [PubMed]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Hakim, M.A.; Juraimi, A.S.; Begum, M.; Hanafi, M.M.; Ismail, M.R.; Selamat, A. Effect of Salt Stress on Germination and Early Seedling Growth of Rice (Oryza sativa L.). Afr. J. Biotechnol. 2010, 9, 1911–1918. [Google Scholar] [CrossRef]
- El-Shabrawi, H.; Kumar, B.; Kaul, T.; Reddy, M.K.; Singla-Pareek, S.L.; Sopory, S.K. Redox Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification as Markers for Salt Tolerance in Pokkali Rice. Protoplasma 2010, 245, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Jacquemin, J.; Bhatia, D.; Singh, K.; Wing, R.A. The International Oryza Map Alignment Project: Development of a Genus-Wide Comparative Genomics Platform to Help Solve the 9 Billion-People Question. Curr. Opin. Plant Biol. 2013, 16, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Fornasiero, A.; Feng, T.; Al-Bader, N.; Alsantely, A.; Mussurova, S.; Hoang, N.V.; Misra, G.; Zhou, Y.; Fabbian, L.; Mohammed, N.; et al. Oryza Genome Evolution through a Tetraploid Lens. Genomics 2024, 57, 1287–1297. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Xu, P.-Z.; Liu, J.-P.; Peng, S.; Mo, X.-C.; Gao, L.-Z. Phylogenetic Relationships and Genome Divergence among the AA- Genome Species of the Genus Oryza as Revealed by 53 Nuclear Genes and 16 Intergenic Regions. Mol. Phylogenet. Evol. 2014, 70, 348–361. [Google Scholar] [CrossRef] [PubMed]
- Wing, R.A.; Ammiraju, J.S.S.; Luo, M.; Kim, H.; Yu, Y.; Kudrna, D.; Goicoechea, J.L.; Wang, W.; Nelson, W.; Rao, K.; et al. The Oryza Map Alignment Project: The Golden Path to Unlocking the Genetic Potential of Wild Rice Species. Plant Mol. Biol. 2005, 59, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Mondal, T.K.; Rawal, H.C.; Chowrasia, S.; Varshney, D.; Panda, A.K.; Mazumdar, A.; Kaur, H.; Gaikwad, K.; Sharma, T.R.; Singh, N.K. Draft Genome Sequence of First Monocot-Halophytic Species Oryza Coarctata Reveals Stress-Specific Genes. Sci. Rep. 2018, 8, 13698. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.C.; Yu, Y.; Copetti, D.; Zwickl, D.J.; Zhang, L.; Zhang, C.; Chougule, K.; Gao, D.; Iwata, A.; Goicoechea, J.L.; et al. Genomes of 13 Domesticated and Wild Rice Relatives Highlight Genetic Conservation, Turnover and Innovation across the Genus Oryza. Nat. Genet. 2018, 50, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, X.; Ge, S.; Jensen, J.D.; Hu, F.; Li, X.; Dong, Y.; Gutenkunst, R.N.; Fang, L.; Huang, L.; et al. Resequencing 50 Accessions of Cultivated and Wild Rice Yields Markers for Identifying Agronomically Important Genes. Nat. Biotechnol. 2012, 30, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Pan, D.; Fan, Z.; Yu, H.; Jiang, L.; Lv, S.; Sun, B.; Chen, W.; Mao, X.; Liu, Q.; et al. Genetic Diversity of Wild Rice Accessions (Oryza Rufipogon Griff.) in Guangdong and Hainan Provinces, China, and Construction of a Wild Rice Core Collection. Front. Plant Sci. 2022, 13, 999454. [Google Scholar] [CrossRef] [PubMed]
- Khush, G.S. Origin, Dispersal, Cultivation and Variation of Rice. In Oryza: From Molecule to Plant; Sasaki, T., Moore, G., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 25–34. [Google Scholar] [CrossRef]
- Atwell, B.J.; Wang, H.; Scafaro, A.P. Could Abiotic Stress Tolerance in Wild Relatives of Rice Be Used to Improve Oryza sativa? Plant Sci. 2014, 215–216, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Ali Md, N.; Yeasmin, L.; Gantait, S.; Goswami, R.; Chakraborty, S. Screening of Rice Landraces for Salinity Tolerance at Seedling Stage through Morphological and Molecular Markers. Physiol. Mol. Biol. Plants 2014, 20, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Huang, Y.; Zhou, S.; Zhang, Y.; Cheng, R.; Guo, J.; Ling, Y. Traditional Rice Landraces in Lei-Qiong Area of South China Tolerate Salt Stress with Strong Antioxidant Activity. Plant Signal. Behav. 2020, 15, 1740466. [Google Scholar] [CrossRef] [PubMed]
- Rasel, M.d.; Tahjib-Ul-Arif, M.d.; Hossain, M.A.; Hassan, L.; Farzana, S.; Brestic, M. Screening of Salt-Tolerant Rice Landraces by Seedling Stage Phenotyping and Dissecting Biochemical Determinants of Tolerance Mechanism. J. Plant Growth Regul. 2021, 40, 1853–1868. [Google Scholar] [CrossRef]
- Prusty, M.R.; Kim, S.-R.; Vinarao, R.; Entila, F.; Egdane, J.; Diaz, M.G.Q.; Jena, K.K. Newly Identified Wild Rice Accessions Conferring High Salt Tolerance Might Use a Tissue Tolerance Mechanism in Leaf. Front. Plant Sci. 2018, 9, 417. [Google Scholar] [CrossRef] [PubMed]
- Haque, T.; Elias, S.M.; Razzaque, S.; Biswas, S.; Khan, S.F.; Jewel, G.M.N.A.; Rahman Md, S.; Juenger, T.E.; Seraj, Z.I. Salt Tolerance QTLs of an Endemic Rice Landrace, Horkuch at Seedling and Reproductive Stages. Sci. Rep. 2022, 12, 17306. [Google Scholar] [CrossRef] [PubMed]
- Lisa, L.A.; Seraj, Z.I.; Fazle Elahi, C.M.; Das, K.C.; Biswas, K.; Islam, M.R.; Salam, M.A.; Gomosta, A.R. Genetic Variation in Microsatellite DNA, Physiology and Morphology of Coastal Saline Rice (Oryza sativa L.) Landraces of Bangladesh. Plant Soil 2004, 263, 213–228. [Google Scholar] [CrossRef]
- Yesmin, N.; Elias, S.M.; Rahman Md, S.; Haque, T.; Mahbub Hasan, A.K.M.; Seraj, Z.I. Unique Genotypic Differences Discovered among Indigenous Bangladeshi Rice Landraces. Int. J. Genom. 2014, 2014, 210328. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Thomson, M.J.; Shah-E-Alam, M.; De Ocampo, M.; Egdane, J.; Ismail, A.M. Exploring Novel Genetic Sources of Salinity Tolerance in Rice through Molecular and Physiological Characterization. Ann. Bot. 2016, 117, 1083–1097. [Google Scholar] [CrossRef] [PubMed]
- Negrão, S.; Cecília Almadanim, M.; Pires, I.S.; Abreu, I.A.; Maroco, J.; Courtois, B.; Gregorio, G.B.; McNally, K.L.; Margarida Oliveira, M. New Allelic Variants Found in Key Rice Salt-Tolerance Genes: An Association Study. Plant Biotechnol. J. 2013, 11, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Platten, J.D.; Egdane, J.A.; Ismail, A.M. Salinity Tolerance, Na+ Exclusion and Allele Mining of HKT1;5 in Oryza sativa and O. Glaberrima: Many Sources, Many Genes, One Mechanism? BMC Plant Biol. 2013, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- Jayabalan, S.; Pulipati, S.; Ramasamy, K.; Jaganathan, D.; Venkatesan, S.D.; Vijay, G.; Kumari, K.; Raju, K.; Hariharan, G.N.; Venkataraman, G. Analysis of Genetic Diversity and Population Structure Using SSR Markers and Validation of a Cleavage Amplified Polymorphic Sequences (CAPS) Marker Involving the Sodium Transporter OsHKT1;5 in Saline Tolerant Rice (Oryza sativa L.) Landraces. Gene 2019, 713, 143976. [Google Scholar] [CrossRef] [PubMed]
- Adak, S.; Datta, S.; Bhattacharya, S.; Ghose, T.K.; Lahiri Majumder, A. Diversity Analysis of Selected Rice Landraces from West Bengal and Their Linked Molecular Markers for Salinity Tolerance. Physiol. Mol. Biol. Plants 2020, 26, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Lokeshkumar, B.M.; Krishnamurthy, S.L.; Rathor, S.; Warriach, A.S.; Vinaykumar, N.M.; Dushyanthakumar, B.M.; Sharma, P.C. Morphophysiological Diversity and Haplotype Analysis of Saltol QTL Region in Diverse Rice Landraces for Salinity Tolerance. Rice Sci. 2023, 30, 306–320. [Google Scholar] [CrossRef]
- Amin, U.S.M.; Biswas, S.; Elias, S.M.; Razzaque, S.; Haque, T.; Malo, R.; Seraj, Z.I. Enhanced Salt Tolerance Conferred by the Complete 2.3 Kb cDNA of the Rice Vacuolar Na+/H+ Antiporter Gene Compared to 1.9 Kb Coding Region with 5′ UTR in Transgenic Lines of Rice. Front. Plant Sci. 2016, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Haque, U.S.; Elias, S.M.; Jahan, I.; Seraj, Z.I. Functional Genomic Analysis of K+ Related Salt-Responsive Transporters in Tolerant and Sensitive Genotypes of Rice. Front. Plant Sci. 2023, 13, 1089109. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Dwiyanti, M.S.; Sakaguchi, S.; Koide, Y.; Le, D.V.; Watanabe, T.; Kishima, Y. Identification of a Saltol-Independent Salinity Tolerance Polymorphism in Rice Mekong Delta Landraces and Characterization of a Promising Line, Doc Phung. Rice 2022, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.N.U.; Jewel, G.M.N.A.; Azim, T.; Seraj, Z.I. Novel QTLs for Salinity Tolerance Revealed by Genome-Wide Association Studies of Biomass, Chlorophyll and Tissue Ion Content in 176 Rice Landraces from Bangladesh. PLoS ONE 2021, 16, e0259456. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, J.; Sun, J.; Gu, S.; Wang, J.; Su, C.; Li, Y.; Ma, D.; Zhao, M.; Chen, W. Mining Beneficial Genes for Salt Tolerance From a Core Collection of Rice Landraces at the Seedling Stage Through Genome-Wide Association Mapping. Front. Plant Sci. 2022, 13, 847863. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhu, C.; Xuan, W.; An, H.; Tian, Y.; Wang, B.; Chi, W.; Chen, G.; Ge, Y.; Li, J.; et al. Genome-Wide Association Studies Identify OsWRKY53 as a Key Regulator of Salt Tolerance in Rice. Nat. Commun. 2023, 14, 3550. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Gao, Z.; Shang, L.; Yang, C.; Ruan, B.; Zeng, D.; Guo, L.; Zhao, F.; Huang, C.; Qian, Q. Natural Variation in the Promoter of OsHMA3 Contributes to Differential Grain Cadmium Accumulation between Indica and Japonica Rice. J. Integr. Plant Biol. 2020, 62, 314–329. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Xu, W.; Xie, J.; Gao, Y.; Wu, L.; Sun, L.; Feng, L.; Chen, X.; Zhang, T.; Dai, C.; et al. Variation of a Major Facilitator Superfamily Gene Contributes to Differential Cadmium Accumulation between Rice Subspecies. Nat. Commun. 2019, 10, 2562. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Mao, D.; Sun, L.; Wang, R.; Tan, L.; Zhu, Y.; Huang, H.; Peng, C.; Zhao, Y.; Wang, J.; et al. CF1 Reduces Grain-cadmium Levels in Rice (Oryza sativa). Plant J. 2022, 110, 1305–1318. [Google Scholar] [CrossRef] [PubMed]
- Norton, G.J.; Pinson, S.R.M.; Alexander, J.; Mckay, S.; Hansen, H.; Duan, G.; Rafiqul Islam, M.; Islam, S.; Stroud, J.L.; Zhao, F.; et al. Variation in Grain Arsenic Assessed in a Diverse Panel of Rice (Oryza sativa) Grown in Multiple Sites. New Phytol. 2012, 193, 650–664. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.-J.; Zhu, Y.-G.; Meharg, A.A. Methylated Arsenic Species in Rice: Geographical Variation, Origin, and Uptake Mechanisms. Environ. Sci. Technol. 2013, 47, 3957–3966. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, F.; Wang, J.; Ma, Y.; Chong, K.; Xu, Y. Basic Helix-Loop-Helix Transcription Factor from Wild Rice (OrbHLH2) Improves Tolerance to Salt- and Osmotic Stress in Arabidopsis. J. Plant Physiol. 2009, 166, 1296–1306. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, F.; Ma, Y.; Chong, K.; Xu, Y. Overexpression of OrbHLH001, a Putative Helix–Loop–Helix Transcription Factor, Causes Increased Expression of AKT1 and Maintains Ionic Balance under Salt Stress in Rice. J. Plant Physiol. 2013, 170, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, P.; Cui, F.; Zhang, F.; Luo, X.; Xie, J. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.). PLoS ONE 2016, 11, e0146242. [Google Scholar] [CrossRef] [PubMed]
- Nan, H.; Li, W.; Lin, Y.; Gao, L. Genome-Wide Analysis of WRKY Genes and Their Response to Salt Stress in the Wild Progenitor of Asian Cultivated Rice, Oryza Rufipogon. Front. Genet. 2020, 11, 359. [Google Scholar] [CrossRef]
- Tian, L.; Tan, L.; Liu, F.; Cai, H.; Sun, C. Identification of Quantitative Trait Loci Associated with Salt Tolerance at Seedling Stage from Oryza Rufipogon. J. Genet. Genom. 2011, 38, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cao, M.; Ma, X.; Chen, W.; Zhao, J.; Sun, C.; Tan, L.; Liu, F. Integrated RNA Sequencing and QTL Mapping to Identify Candidate Genes from Oryza Rufipogon Associated with Salt Tolerance at the Seedling Stage. Front. Plant Sci. 2017, 8, 1427. [Google Scholar] [CrossRef] [PubMed]
- Quan, R.; Wang, J.; Hui, J.; Bai, H.; Lyu, X.; Zhu, Y.; Zhang, H.; Zhang, Z.; Li, S.; Huang, R. Improvement of Salt Tolerance Using Wild Rice Genes. Front. Plant Sci. 2018, 8, 2269. [Google Scholar] [CrossRef] [PubMed]
- Ganeshan, P.; Jain, A.; Parmar, B.; Rao, A.R.; Sreenu, K.; Mishra, P.; Mesapogu, S.; Subrahmanyam, D.; Ram, T.; Sarla, N.; et al. Identification of salt tolerant rice lines among interspecific BILs developed by crossing ‘Oryza sativa× O. rufipogon and O. sativa× O. nivara’. Aust. J. Crop Sci. 2016, 10, 220–228. [Google Scholar]
- Kumari, S.; Singh, B.; Singh, S.K.; Satya, D.; Singh, S.; Tripathy, K.; Gaikwad, K.; Rai, V.; Singh, N.K. Exploring Novel QTLs among Backcross Lines for Salinity Tolerance in Rice. Indian J. Agric. Sci. 2022, 91, 426–435. [Google Scholar] [CrossRef]
- Wairich, A.; Wember, L.S.; Gassama, L.J.; Wu, L.; Murugaiyan, V.; Ricachenevsky, F.K.; Margis-Pinheiro, M.; Frei, M. Salt Resistance of Interspecific Crosses of Domesticated and Wild Rice Species. J. Plant Nutr. Soil Sci. 2021, 184, 492–507. [Google Scholar] [CrossRef]
- Solis, C.A.; Yong, M.T.; Vinarao, R.; Jena, K.; Holford, P.; Shabala, L.; Zhou, M.; Shabala, S.; Chen, Z.-H. Back to the Wild: On a Quest for Donors Toward Salinity Tolerant Rice. Front. Plant Sci. 2020, 11, 323. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Singh, B.; Misra, P.; Rai, V.; Singh, N.K. Haplotype Distribution and Association of Candidate Genes with Salt Tolerance in Indian Wild Rice Germplasm. Plant Cell Rep. 2016, 35, 2295–2308. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Majumder, A.L. Porteresia coarctata (Roxb.) Tateoka, a Wild Rice: A Potential Model for Studying Salt-stress Biology in Rice. Plant Cell Environ. 2010, 33, 526–542. [Google Scholar] [CrossRef] [PubMed]
- Kizhakkedath, P.; Jegadeeson, V.; Venkataraman, G.; Parida, A. A Vacuolar Antiporter Is Differentially Regulated in Leaves and Roots of the Halophytic Wild Rice Porteresia coarctata (Roxb.) Tateoka. Mol. Biol. Rep. 2015, 42, 1091–1105. [Google Scholar] [CrossRef] [PubMed]
- Garg, R.; Verma, M.; Agrawal, S.; Shankar, R.; Majee, M.; Jain, M. Deep Transcriptome Sequencing of Wild Halophyte Rice, Porteresia coarctata, Provides Novel Insights into the Salinity and Submergence Tolerance Factors. DNA Res. 2014, 21, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Majee, M.; Maitra, S.; Dastidar, K.G.; Pattnaik, S.; Chatterjee, A.; Hait, N.C.; Das, K.P.; Majumder, A.L. A Novel Salt-Tolerant l-Myo-Inositol-1-Phosphate Synthase from Porteresia coarctata (Roxb.) Tateoka, a Halophytic Wild Rice. J. Biol. Chem. 2004, 279, 28539–28552. [Google Scholar] [CrossRef] [PubMed]
- Das-Chatterjee, A.; Goswami, L.; Maitra, S.; Dastidar, K.G.; Ray, S.; Majumder, A.L. Introgression of a Novel Salt-tolerant L-Myo-inositol 1-phosphate Synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) Confers Salt Tolerance to Evolutionary Diverse Organisms. FEBS Lett. 2006, 580, 3980–3988. [Google Scholar] [CrossRef] [PubMed]
- Menguer, P.K.; Sperotto, R.A.; Ricachenevsky, F.K. A Walk on the Wild Side: Oryza Species as Source for Rice Abiotic Stress Tolerance. Genet. Mol. Biol. 2017, 40 (Suppl. S1), 238–252. [Google Scholar] [CrossRef] [PubMed]
- Latha, R.; Srinivas Rao, C.; Sr Subramaniam, H.M.; Eganathan, P.; Swaminathan, M.S. Approaches to Breeding for Salinity Tolerance—A Case Study on Porteresia coarctata. Ann. Appl. Biol. 2004, 144, 177–184. [Google Scholar] [CrossRef]
- Jena, K.K.; Khush, G.S. Embryo rescue of interspecific hybrids and its scope in rice improvement. Rice Genet. Newsl. 1984, 1, 133–134. [Google Scholar]
- Islam, T.; Biswas, S.; Mita, U.H.; Sarker, R.; Rahman, M.S.; Ali, M.A.; Aziz, K.S.; Seraj, Z.I. Characterization of Progenies from Intergeneric Hybridization Between Oryza sativa L. and Porteresia coarctata (Roxb.) Tateoka. Plant Tissue Cult. Biotechnol. 2017, 27, 63–76. [Google Scholar] [CrossRef]
- Shahzad, B.; Yun, P.; Shabala, L.; Zhou, M.; Sellamuthu, G.; Venkataraman, G.; Chen, Z.-H.; Shabala, S. Unravelling the Physiological Basis of Salinity Stress Tolerance in Cultivated and Wild Rice Species. Funct. Plant Biol. 2022, 49, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Chen, X.; Zhao, J.; Wang, S.; Tan, L.; Sun, C.; Liu, F. Identification of QTLs Related to Cadmium Tolerance from Wild Rice (Oryza nivara) Using a High-Density Genetic Map for a Set of Introgression Lines. Euphytica 2019, 215, 205. [Google Scholar] [CrossRef]
- Nguyen, B.D.; Brar, D.S.; Bui, B.C.; Nguyen, T.V.; Pham, L.N.; Nguyen, H.T. Identification and Mapping of the QTL for Aluminum Tolerance Introgressed from the New Source, ORYZA RUFIPOGON Griff., into Indica Rice (Oryza sativa L.). Theor. Appl. Genet. 2003, 106, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Liang, R.; Wang, G.; Ma, S.; Liu, N.; Gong, Y.; Mccouch, S.R.; Zhu, H.; Liu, Z.; Li, Z.; et al. Design of Rice with Low Cadmium Accumulation in Grain Using Single Segment Substitution Line. New Crops 2025, 2, 100035. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, L.; Xiong, T.; Wang, Z.; Liao, Y.; Zou, T.; Zheng, M.; Zhang, Z.; Pan, X.; He, N.; et al. Genetic Characterization of the Chromosome Single-Segment Substitution Lines of O. glumaepatula and O. barthii and Identification of QTLs for Yield-Related Traits. Mol. Breed. 2019, 39, 51. [Google Scholar] [CrossRef]
- Ashraf, H.; Ghouri, F.; Zhong, M.; Cheema, S.A.; Haider, F.U.; Sun, L.; Ali, S.; Alshehri, M.A.; Fu, X.; Shahid, M.Q. Oryza Glumaepatula and Calcium Oxide Nanoparticles Enhanced Cr Stress Tolerance by Maintaining Antioxidant Defense, Chlorophyll and Gene Expression Levels in Rice. J. Environ. Manag. 2024, 368, 122239. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.-J.; Tang, Z.; Song, J.-J.; Huang, X.-Y.; Wang, P. Toxic Metals and Metalloids: Uptake, Transport, Detoxification, Phytoremediation, and Crop Improvement for Safer Food. Mol. Plant 2022, 15, 27–44. [Google Scholar] [CrossRef] [PubMed]
- Phosuwan, S.; Nounjan, N.; Theerakulpisut, P.; Siangliw, M.; Charoensawan, V. Comparative Quantitative Trait Loci Analysis Framework Reveals Relationships between Salt Stress Responsive Phenotypes and Pathways. Front. Plant Sci. 2024, 15, 1264909. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zheng, J.; Du, H.; Du, X.; Li, C.; Duan, Y.; Cai, Y.; Wang, J.; Liu, H.; Yang, L.; et al. GWAS Combined with Linkage Analysis Reveals Major QTLs and Candidate Genes of Salt Tolerance in Japonica Rice Seedlings. Front. Plant Sci. 2024, 15, 1462856. [Google Scholar] [CrossRef] [PubMed]
- Jamla, M.; Khare, T.; Joshi, S.; Patil, S.; Penna, S.; Kumar, V. Omics Approaches for Understanding Heavy Metal Responses and Tolerance in Plants. Curr. Plant Biol. 2021, 27, 100213. [Google Scholar] [CrossRef]
- Wang, C.; Han, B. Twenty Years of Rice Genomics Research: From Sequencing and Functional Genomics to Quantitative Genomics. Mol. Plant 2022, 15, 593–619. [Google Scholar] [CrossRef] [PubMed]
- Haider, Z.; Ahmad, I.; Zia, S.; Gan, Y. Recent Developments in Rice Molecular Breeding for Tolerance to Heavy Metal Toxicity. Agriculture 2023, 13, 944. [Google Scholar] [CrossRef]
- Li, M.; Gao, M.; Huang, J.; Jin, S.; Lv, Y.; Wang, L.; Huang, T.; Wu, F.; Xu, Z.; Pan, Y.; et al. QTL Mapping and Candidate Gene Analysis of Element Accumulation in Rice Grains via Genome-Wide Association Study and Population Genetic Analysis. BMC Plant Biol. 2025, 25, 93. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-B.; Kim, G.-J.; Shin, J.-D.; Chung, W.; Park, S.-K.; Choi, G.-H.; Park, S.-W.; Park, Y.-J. Genome-Scale Profiling and High-Throughput Analyses Unravel the Genetic Basis of Arsenic Content Variation in Rice. Front. Plant Sci. 2022, 13, 905842. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, G.; Li, Y.; Peng, Y.; Zhang, A.; Hong, K.; Jiang, H.; Ruan, B.; Zhang, B.; Yang, S.; et al. Characterization of a Major QTL for Manganese Accumulation in Rice Grain. Sci. Rep. 2017, 7, 17704. [Google Scholar] [CrossRef] [PubMed]
- Murugaiyan, V.; Ali, J.; Mahender, A.; Aslam, U.M.; Jewel, Z.A.; Pang, Y.; Marfori-Nazarea, C.M.; Wu, L.-B.; Frei, M.; Li, Z. Mapping of Genomic Regions Associated with Arsenic Toxicity Stress in a Backcross Breeding Populations of Rice (Oryza sativa L.). Rice 2019, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Asif, S.; Kim, N.; Jan, R.; Asaf, S.; Lubna; Farooq, M.; Khan, W.; Khan, Z.; Kim, E.-G.; Jang, Y.-H.; et al. Determining Arsenic Stress Tolerance Genes in Rice (Oryza sativa L.) via Genomic Insights and QTL Mapping with Double Haploid Lines. Plant Physiol. Biochem. 2024, 214, 108941. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Li, Y.; Liu, W.; Liu, S.; Min, J.; Xiong, H.; Dong, Z.; Duan, Y.; Yu, Y.; Li, X. QTL Mapping and Candidate Gene Analysis of Cadmium Accumulation in Polished Rice by Genome-Wide Association Study. Sci. Rep. 2020, 10, 11791. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Sun, L.; Zhang, Y.; Tan, Y.; Zhu, Y.; Peng, C.; Wang, J.; Yan, H.; Mao, D.; Liang, G.; et al. The Metal Tolerance Protein OsMTP11 Facilitates Cadmium Sequestration in the Vacuoles of Leaf Vascular Cells for Restricting Its Translocation into Rice Grains. Mol. Plant 2024, 17, 1733–1752. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, S.; Chen, M.; Zheng, G.; Peng, Y.; Shi, X.; Qin, P.; Xu, X.; Teng, S. Association Study Reveals Genetic Loci Responsible for Arsenic, Cadmium and Lead Accumulation in Rice Grain in Contaminated Farmlands. Front. Plant Sci. 2019, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- Sui, F.; Zhao, D.; Zhu, H.; Gong, Y.; Tang, Z.; Huang, X.-Y.; Zhang, G.; Zhao, F.-J. Map-Based Cloning of a New Total Loss-of-Function Allele of OsHMA3 Causes High Cadmium Accumulation in Rice Grain. J. Exp. Bot. 2019, 70, 2857–2871. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.-S.; Huang, J.; Zeng, D.-L.; Peng, J.-S.; Zhang, G.-B.; Ma, H.-L.; Guan, Y.; Yi, H.-Y.; Fu, Y.-L.; Han, B.; et al. A Defensin-like Protein Drives Cadmium Efflux and Allocation in Rice. Nat. Commun. 2018, 9, 645. [Google Scholar] [CrossRef]
- Guo, R.; Zhang, Q.; Chen, C.Z.; Sun, J.Y.; Tu, C.Y.; He, M.X.; Shen, R.F.; Huang, J.; Zhu, X.F. A Novel Aldo-Keto Reductase Gene, OsAKR1, from Rice Confers Higher Tolerance to Cadmium Stress in Rice by an in Vivo Reactive Aldehyde Detoxification. J. Hazard. Mater. 2024, 470, 134212. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-Y.; Deng, F.; Yamaji, N.; Pinson, S.R.M.; Fujii-Kashino, M.; Danku, J.; Douglas, A.; Guerinot, M.L.; Salt, D.E.; Ma, J.F. A Heavy Metal P-Type ATPase OsHMA4 Prevents Copper Accumulation in Rice Grain. Nat. Commun. 2016, 7, 12138. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Long, S.-X.; Pinson, S.R.M.; Tang, Z.; Guerinot, M.L.; Salt, D.E.; Zhao, F.-J.; Huang, X.-Y. Univariate and Multivariate QTL Analyses Reveal Covariance Among Mineral Elements in the Rice Ionome. Front. Genet. 2021, 12, 638555. [Google Scholar] [CrossRef] [PubMed]
- Thummala, S.R.; Guttikonda, H.; Tiwari, S.; Ramanan, R.; Baisakh, N.; Neelamraju, S.; Mangrauthia, S.K. Whole-Genome Sequencing of KMR3 and Oryza Rufipogon-Derived Introgression Line IL50-13 (Chinsurah Nona 2/Gosaba 6) Identifies Candidate Genes for High Yield and Salinity Tolerance in Rice. Front. Plant Sci. 2022, 13, 810373. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Vaughn, R.; Septiningsih, E.M.; Singh, R.K.; Thomson, M.J. Identification of QTLs for Reproductive Stage Salinity Tolerance in Rice Using a Cross between CSR28 and BRRI Dhan28. Crop Sci. 2025, 65, e70014. [Google Scholar] [CrossRef]
- Sugasi, Y.D.; Srivastava, A.; Badri, J.; Pandey, M.; Parmar, B.; Singh, A.K.; Kishor, P.B.K.; Tilatoo, R. Mapping Quantitative Trait Loci (QTLs) for Reproductive Stage Salinity Tolerance in Rice. Crops 2024, 4, 684–700. [Google Scholar] [CrossRef]
- Kitomi, Y.; Hanzawa, E.; Kuya, N.; Inoue, H.; Hara, N.; Kawai, S.; Kanno, N.; Endo, M.; Sugimoto, K.; Yamazaki, T.; et al. Root Angle Modifications by the DRO1 Homolog Improve Rice Yields in Saline Paddy Fields. Proc. Natl. Acad. Sci. USA 2020, 117, 21242–21250. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Bu, W.; Xu, Y.; Fei, H.; Zhu, Y.; Ahmad, I.; Nimir, N.E.A.; Zhou, G.; Zhu, G. Effects of Salt Stress on Physiological and Agronomic Traits of Rice Genotypes with Contrasting Salt Tolerance. Plants 2024, 13, 1157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ponce, K.S.; Meng, L.; Chakraborty, P.; Zhao, Q.; Guo, L.; Gao, Z.; Leng, Y.; Ye, G. QTL Identification for Salt Tolerance Related Traits at the Seedling Stage in Indica Rice Using a Multi-Parent Advanced Generation Intercross (MAGIC) Population. Plant Growth Regul. 2020, 92, 365–373. [Google Scholar] [CrossRef]
- Frouin, J.; Languillaume, A.; Mas, J.; Mieulet, D.; Boisnard, A.; Labeyrie, A.; Bettembourg, M.; Bureau, C.; Lorenzini, E.; Portefaix, M.; et al. Tolerance to Mild Salinity Stress in Japonica Rice: A Genome-Wide Association Mapping Study Highlights Calcium Signaling and Metabolism Genes. PLoS ONE 2018, 13, e0190964. [Google Scholar] [CrossRef] [PubMed]
- Thomson, M.J.; De Ocampo, M.; Egdane, J.; Rahman, M.A.; Sajise, A.G.; Adorada, D.L.; Tumimbang-Raiz, E.; Blumwald, E.; Seraj, Z.I.; Singh, R.K.; et al. Characterizing the Saltol Quantitative Trait Locus for Salinity Tolerance in Rice. Rice 2010, 3, 148–160. [Google Scholar] [CrossRef]
- Kobayashi, N.I.; Yamaji, N.; Yamamoto, H.; Okubo, K.; Ueno, H.; Costa, A.; Tanoi, K.; Matsumura, H.; Fujii-Kashino, M.; Horiuchi, T.; et al. OsHKT1;5 Mediates Na+ Exclusion in the Vasculature to Protect Leaf Blades and Reproductive Tissues from Salt Toxicity in Rice. Plant J. 2017, 91, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Bundó, M.; Martín-Cardoso, H.; Pesenti, M.; Gómez-Ariza, J.; Castillo, L.; Frouin, J.; Serrat, X.; Nogués, S.; Courtois, B.; Grenier, C.; et al. Integrative Approach for Precise Genotyping and Transcriptomics of Salt Tolerant Introgression Rice Lines. Front. Plant Sci. 2022, 12, 797141. [Google Scholar] [CrossRef] [PubMed]
- Marè, C.; Zampieri, E.; Cavallaro, V.; Frouin, J.; Grenier, C.; Courtois, B.; Brottier, L.; Tacconi, G.; Finocchiaro, F.; Serrat, X.; et al. Marker-Assisted Introgression of the Salinity Tolerance Locus Saltol in Temperate Japonica Rice. Rice 2023, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, R.; Ishimaru, Y.; Senoura, T.; Shimo, H.; Ishikawa, S.; Arao, T.; Nakanishi, H.; Nishizawa, N.K. The OsNRAMP1 Iron Transporter Is Involved in Cd Accumulation in Rice. J. Exp. Bot. 2011, 62, 4843–4850. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhang, Y.; Zhang, L.; Hu, J.; Zhang, X.; Lu, K.; Dong, H.; Wang, D.; Zhao, F.-J.; Huang, C.-F.; et al. OsNRAMP5 Contributes to Manganese Translocation and Distribution in Rice Shoots. J. Exp. Bot. 2014, 65, 4849–4861. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Huang, R.; Liu, L.; Tang, G.; Xiao, J.; Yoo, H.; Yuan, M. The Rice Heavy-metal Transporter OsNRAMP1 Regulates Disease Resistance by Modulating ROS Homoeostasis. Plant Cell Environ. 2022, 45, 1109–1126. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, X.; Salt, D.E.; Zhao, F. Mutation in OsCADT1 Enhances Cadmium Tolerance and Enriches Selenium in Rice Grain. New Phytol. 2020, 226, 838–850. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Bovet, L.; Maeshima, M.; Martinoia, E.; Lee, Y. The ABC Transporter AtPDR8 Is a Cadmium Extrusion Pump Conferring Heavy Metal Resistance. Plant J. 2007, 50, 207–218. [Google Scholar] [CrossRef]
- Park, J.; Song, W.; Ko, D.; Eom, Y.; Hansen, T.H.; Schiller, M.; Lee, T.G.; Martinoia, E.; Lee, Y. The Phytochelatin Transporters AtABCC1 and AtABCC2 Mediate Tolerance to Cadmium and Mercury. Plant J. 2012, 69, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Karle, S.B.; Negi, Y.; Srivastava, S.; Suprasanna, P.; Kumar, K. Overexpression of OsTIP1;2 Confers Arsenite Tolerance in Rice and Reduces Root-to-Shoot Translocation of Arsenic. Plant Physiol. Biochem. 2024, 210, 108608. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Yang, Y.; Han, T.-L.; Peng, J.-S.; Gong, J.-M.; Meng, S. Targeted Expression of OsHMA3 Driven by the OsYSL16 Promoter Decreases Cd Accumulation in Grains. Environ. Exp. Bot. 2025, 233, 106138. [Google Scholar] [CrossRef]
- Long, W.; He, Q.; Wang, Y.; Wang, Y.; Wang, J.; Yuan, Z.; Wang, M.; Chen, W.; Luo, L.; Luo, L.; et al. Genome Evolution and Diversity of Wild and Cultivated Rice Species. Nat. Commun. 2024, 15, 9994. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, H.; Ghouri, F.; Sun, L.; Xia, W.; Ashraf, S.; Ashraf, M.Z.; Fu, X.; Ali, S.; Shahid, M.Q. Energy Metabolism, Antioxidant Defense System, Metal Transport, and Ion Homeostasis Are Key Contributors to Cd Tolerance in SSSL Derived from Wild Rice. J. Hazard. Mater. 2025, 488, 137009. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.Q.; Wang, X.K.; Li, Z.C.; Yoshimura, A.; Iwata, N. Comparison of the Genetic Diversity of Common Wild Rice (Oryza Rufipogon Griff.) and Cultivated Rice (O. sativa L.) Using RFLP Markers. Theor. Appl. Genet. 2001, 102, 157–162. [Google Scholar] [CrossRef]
- Ram, T.; Majumder, N.D.; Mishra, B.; Ansari, M.M.; Padmavathi, G. Introgression of Broad-Spectrum Blast Resistance Gene(s) into Cultivated Rice (Oryza sativa ssp Indica) from Wild Rice O. rufipogon. Curr. Sci. 2007, 92, 225–230. Available online: http://www.jstor.org/stable/24096693 (accessed on 15 May 2025).
- Cho, S.M.; Shin, S.H.; Kim, K.S.; Kim, Y.C.; Eun, M.Y.; Cho, B.H. Enhanced Expression of a Gene Encoding a Nucleoside Diphosphate Kinase 1 (OsNDPK1) in Rice Plants upon Infection with Bacterial Pathogens. Mol. Cells 2004, 18, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Yadav, A.; Kumar, A.; Verma, R.; Lal, S.; Srivastava, S.; Sanyal, I. Plant Metallothioneins as Regulators of Environmental Stress Responses. Int. J. Plant Environ. 2021, 7, 27–38. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, J.; Wang, W.; Wang, Y.; Xu, J.; Li, Z.; Zhao, X.; Fu, B. Integrated analysis of the transcriptome and metabolome revealed the molecular mechanisms underlying the enhanced salt tolerance of rice due to the application of exogenous melatonin. Front. Plant Sci. 2021, 11, 618680. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.A.; Abdullah-Zawawi, M.R.; Zainal-Abidin, R.A.; Sukiran, N.L.; Uddin, M.I.; Zainal, Z. A review of integrative omic approaches for understanding rice salt response mechanisms. Plants 2022, 11, 1430. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Liu, M.; Chu, N.; Chen, G.; Wang, P.; Mo, J.; Guo, H.; Xu, J.; Zhou, H. Combined transcriptome and metabolome reveal glutathione metabolism plays a critical role in resistance to salinity in rice landraces HD961. Front. Plant Sci. 2022, 13, 952595. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zong, Y.; Li, L.; Wu, S.; Duan, M.; Lu, R.; Liu, C.; Chen, Z. Integrated analysis of transcriptome and metabolome reveals molecular mechanisms of salt tolerance in seedlings of upland rice landrace 17SM-19. Front. Plant Sci. 2022, 13, 961445. [Google Scholar] [CrossRef] [PubMed]
- Ueno, D.; Yamaji, N.; Kono, I.; Huang, C.F.; Ando, T.; Yano, M.; Ma, J.F. Gene Limiting Cadmium Accumulation in Rice. Proc. Natl. Acad. Sci. USA 2010, 107, 16500–16505. [Google Scholar] [CrossRef] [PubMed]
- Miyadate, H.; Adachi, S.; Hiraizumi, A.; Tezuka, K.; Nakazawa, N.; Kawamoto, T.; Katou, K.; Kodama, I.; Sakurai, K.; Takahashi, H.; et al. OsHMA3, a P1B-type of ATPase Affects Root-to-shoot Cadmium Translocation in Rice by Mediating Efflux into Vacuoles. New Phytol. 2011, 189, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, A.; Yamaji, N.; Ma, J.F. Overexpression of OsHMA3 Enhances Cd Tolerance and Expression of Zn Transporter Genes in Rice. J. Exp. Bot. 2014, 65, 6013–6021. [Google Scholar] [CrossRef] [PubMed]
- Satoh-Nagasawa, N.; Mori, M.; Nakazawa, N.; Kawamoto, T.; Nagato, Y.; Sakurai, K.; Takahashi, H.; Watanabe, A.; Akagi, H. Mutations in Rice (Oryza sativa) Heavy Metal ATPase 2 (OsHMA2) Restrict the Translocation of Zinc and Cadmium. Plant Cell Physiol. 2012, 53, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Yamaji, N.; Ma, J.F.; Lee, S.; Jeon, J.; Martinoia, E.; Lee, Y.; Song, W. Engineering Rice with Lower Grain Arsenic. Plant Biotechnol. J. 2018, 16, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Chen, Y.; Che, J.; Konishi, N.; Tang, Z.; Miller, A.J.; Ma, J.F.; Zhao, F. Decreasing Arsenic Accumulation in Rice by Overexpressing Os NIP 1;1 and Os NIP 3;3 through Disrupting Arsenite Radial Transport in Roots. New Phytol. 2018, 219, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guo, J.; Xu, W.; Ma, M. RNA Interference-mediated Silencing of Phytochelatin Synthase Gene Reduce Cadmium Accumulation in Rice Seeds. J. Integr. Plant Biol. 2007, 49, 1032–1037. [Google Scholar] [CrossRef]
- Sathee, L.; Jagadhesan, B.; Pandesha, P.H.; Barman, D.; Adavi, B.S.; Nagar, S.; Krishna, G.K.; Tripathi, S.; Jha, S.K.; Chinnusamy, V. Genome Editing Targets for Improving Nutrient Use Efficiency and Nutrient Stress Adaptation. Front. Genet. 2022, 13, 900897. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Mao, B.; Li, Y.; Lv, Q.; Zhang, L.; Chen, C.; He, H.; Wang, W.; Zeng, X.; Shao, Y.; et al. Knockout of OsNramp5 Using the CRISPR/Cas9 System Produces Low Cd-Accumulating Indica Rice without Compromising Yield. Sci. Rep. 2017, 7, 14438. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Dong, J.; Qu, M.; Lv, Q.; Zhang, L.; Peng, C.; Hu, Y.; Li, Y.; Ji, Z.; Mao, B.; et al. Knockout of OsNRAMP5 Enhances Rice Tolerance to Cadmium Toxicity in Response to Varying External Cadmium Concentrations via Distinct Mechanisms. Sci. Total Environ. 2022, 832, 155006. [Google Scholar] [CrossRef] [PubMed]
- Songmei, L.; Jie, J.; Yang, L.; Jun, M.; Shouling, X.; Yuanyuan, T.; Youfa, L.; Qingyao, S.; Jianzhong, H. Characterization and Evaluation of OsLCT1 and OsNramp5 Mutants Generated Through CRISPR/Cas9-Mediated Mutagenesis for Breeding Low Cd Rice. Rice Sci. 2019, 26, 88–97. [Google Scholar] [CrossRef]
- Nieves-Cordones, M.; Mohamed, S.; Tanoi, K.; Kobayashi, N.I.; Takagi, K.; Vernet, A.; Guiderdoni, E.; Périn, C.; Sentenac, H.; Véry, A. Production of low-Cs+ Rice Plants by Inactivation of the K+ Transporter Os HAK 1 with the CRISPR-Cas System. Plant J. 2017, 92, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Zeng, M.; Wang, J.; Zeng, Z.; Dai, J.; Xie, Z.; Yang, Y.; Tian, L.; Chen, L.; Li, D. A Node-Expressed Transporter OsCCX2 Is Involved in Grain Cadmium Accumulation of Rice. Front. Plant Sci. 2018, 9, 476. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Rao, M.J.; Li, J.; Wang, Y.; Chen, P.; Yu, H.; Ma, C.; Wang, L. CRISPR/Cas9 Mutant Rice Ospmei12 Involved in Growth, Cell Wall Development, and Response to Phytohormone and Heavy Metal Stress. Int. J. Mol. Sci. 2022, 23, 16082. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hu, D.; Liu, X.; Zhang, R.; Liu, H.; Tang, Z.; Zhao, F.; Huang, X. The OsZIP2 Transporter Is Involved in Root-to-shoot Translocation and Intervascular Transfer of Cadmium in Rice. Plant Cell Environ. 2024, 47, 3865–3881. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Liu, Y.; Wang, F.; Li, T.; Chen, Z.; Kong, D.; Bi, J.; Zhang, F.; Luo, X.; Wang, J.; et al. Enhanced Rice Salinity Tolerance via CRISPR/Cas9-Targeted Mutagenesis of the OsRR22 Gene. Mol. Breed. 2019, 39, 47. [Google Scholar] [CrossRef] [PubMed]
- Ly, L.K.; Ho, T.M.; Bui, T.P.; Nguyen, L.T.; Phan, Q.; Le, N.T.; Khuat, L.T.M.; Le, L.H.; Chu, H.H.; Pham, N.B.; et al. CRISPR/Cas9 Targeted Mutations of OsDSG1 Gene Enhanced Salt Tolerance in Rice. Funct. Integr. Genom. 2024, 24, 70. [Google Scholar] [CrossRef] [PubMed]
- Santosh Kumar, V.V.; Verma, R.K.; Yadav, S.K.; Yadav, P.; Watts, A.; Rao, M.V.; Chinnusamy, V. CRISPR-Cas9 Mediated Genome Editing of Drought and Salt Tolerance (OsDST) Gene in Indica Mega Rice Cultivar MTU1010. Physiol. Mol. Biol. Plants 2020, 26, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- Biswal, A.K.; Wu, T.-Y.; Urano, D.; Pelissier, R.; Morel, J.-B.; Jones, A.M.; Biswal, A.K. Novel Mutant Alleles Reveal a Role of the Extra-Large G Protein in Rice Grain Filling, Panicle Architecture, Plant Growth, and Disease Resistance. Front. Plant Sci. 2022, 12, 782960. [Google Scholar] [CrossRef] [PubMed]
- Beattie, G.A.; Edlund, A.; Esiobu, N.; Gilbert, J.; Nicolaisen, M.H.; Jansson, J.K.; Jensen, P.; Keiluweit, M.; Lennon, J.T.; Martiny, J.; et al. Soil Microbiome Interventions for Carbon Sequestration and Climate Mitigation. mSystems 2025, 10, e01129-24. [Google Scholar] [CrossRef] [PubMed]
- Gunjal, A.B.; Glick, B.R. Plant Growth-Promoting Bacteria (PGPB) in Horticulture. Proc. Indian Natl. Sci. Acad. 2024, 90, 1–11. [Google Scholar] [CrossRef]
- Sarma, S.D.; Arora, P. Halophiles. In Encyclopedia of Life Sciences; Nature Publishing Group: London, UK, 2001; pp. 1–9. [Google Scholar]
- Kumar, A.; Verma, J.P. Does plant-Microbe interaction confer stress tolerance in plants: A review? Microbiol. Res. 2018, 207, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Etesami, H.; Jeong, B.R.; Raheb, A. Arsenic (As) Resistant Bacteria with Multiple Plant Growth-Promoting Traits: Potential to Alleviate As Toxicity and Accumulation in Rice. Microbiol. Res. 2023, 272, 127391. [Google Scholar] [CrossRef] [PubMed]
- Sharma, I.; Sharma, S.; Sharma, V.; Singh, A.K.; Sharma, A.; Kumar, A.; Singh, J.; Sharma, A. PGPR-Enabled Bioremediation of Pesticide and Heavy Metal-Contaminated Soil: A Review of Recent Advances and Emerging Challenges. Chemosphere 2024, 362, 142678. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Narayanan, M.; Shi, X.; Chen, X.; Li, Z.; Natarajan, D.; Ma, Y. Plant Growth-Promoting Bacteria in Metal-Contaminated Soil: Current Perspectives on Remediation Mechanisms. Front. Microbiol. 2022, 13, 966226. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Bol, R.; Chen, H.; Cui, Q.; Qiu, T.; Zhao, S.; Fang, L. A Meta-Analysis on Crop Growth and Heavy Metals Accumulation with PGPB Inoculation in Contaminated Soils. J. Hazard. Mater. 2024, 471, 134370. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Vibhandik, R.; Agrahari, R.; Daverey, A.; Rani, R. Role of root exudates on the soil microbial diversity and biogeochemistry of heavy metals. Appl. Biochem. Biotechnol. 2024, 196, 2673–2693. [Google Scholar] [CrossRef] [PubMed]
- Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ.-Sci. 2014, 26, 1–20. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Yusof, M.L.M.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Vishwakarma, K.; Sharma, S.; Kumar, V.; Upadhyay, N.; Kumar, N.; Mishra, R.; Yadav, G.; Verma, R.K.; Tripathi, D.K. Current scenario of root exudate–mediated plant-microbe interaction and promotion of plant growth. In Probiotics Agroecosystem; Springer: Singapore, 2017; pp. 349–369. ISBN 978-981-1040580. [Google Scholar] [CrossRef]
- Seshadri, B.; Bolan, N.S.; Naidu, R. Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation. J. Soil Sci. Plant Nutr. 2015, 15, 524–548. [Google Scholar] [CrossRef]
- Padmavathiamma, P.K.; Li, L.Y. Rhizosphere infuence and seasonal impact on phytostabilisation of metals—A feld study. Water Air Soil Pollut. 2012, 223, 107–124. [Google Scholar] [CrossRef]
- Robinson, B.H.; Bañuelos, G.; Conesa, H.M.; Evangelou, M.W.; Schulin, R. The phytomanagement of trace elements in soil. Crit. Rev. Plant Sci. 2009, 28, 240–266. [Google Scholar] [CrossRef]
- Islam, S.; Rahman, M.M.; Islam, M.R.; Naidu, R. Arsenic Accumulation in Rice: Consequences of Rice Genotypes and Management Practices to Reduce Human Health Risk. Environ. Int. 2016, 96, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Marschner, P. Processes in Submerged Soils—Linking Redox Potential, Soil Organic Matter Turnover and Plants to Nutrient Cycling. Plant Soil 2021, 464, 1–12. [Google Scholar] [CrossRef]
- Shah, A.; Shah, S.; Shah, V. Impact of Flooding on the Soil Microbiota. Environ. Chall. 2021, 4, 100134. [Google Scholar] [CrossRef]
- Yakubu, I.; Yeon, E.; Kong, H.G. Microbial Community Responses to Alternate Wetting and Drying in the System of Rice Intensification. Plant Pathol. J. 2025, 41, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Luo, G.; Wang, Y.; Fei, J.; Xiangmin, R.; Peng, J.; Tian, C.; Zhang, Y. Crop rotation-driven change in physicochemical properties regulates microbial diversity, dominant components, and community complexity in paddy soils. Agric. Ecosyst. Environ. 2023, 343, 108278. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Q.; Zhao, F.; Yang, J.; Fu, J.; Liao, X. An integrated three-crop rotation of oilseed rape− rice− rice enables the safe utilization and sustainable remediation of Cd-contaminated farmland. Environ. Technol. Innov. 2025, 38, 104123. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, Y.; Xu, Z.; Ding, Y.; Zhou, X.; Dong, M. A High Mn(II)-Tolerance Strain, Bacillus Thuringiensis HM7, Isolated from Manganese Ore and Its Biosorption Characteristics. PeerJ 2020, 8, e8589. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshanee, M.; Chatterjee, S.; Rath, S.; Dash, H.R.; Das, S. Cellular and Genetic Mechanism of Bacterial Mercury Resistance and Their Role in Biogeochemistry and Bioremediation. J. Hazard. Mater. 2022, 423, 126985. [Google Scholar] [CrossRef] [PubMed]
- Ali, Q.; Ayaz, M.; Mu, G.; Hussain, A.; Yuanyuan, Q.; Yu, C.; Xu, Y.; Manghwar, H.; Gu, Q.; Wu, H.; et al. Revealing Plant Growth-Promoting Mechanisms of Bacillus Strains in Elevating Rice Growth and Its Interaction with Salt Stress. Front. Plant Sci. 2022, 13, 994902. [Google Scholar] [CrossRef] [PubMed]
- Senthil Kumar, R.; Koner, S.; Tsai, H.-C.; Chen, J.-S.; Huang, S.-W.; Hsu, B.-M. Deciphering Endemic Rhizosphere Microbiome Community’s Structure towards the Host-Derived Heavy Metals Tolerance and Plant Growth Promotion Functions in Serpentine Geo-Ecosystem. J. Hazard. Mater. 2023, 452, 131359. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Sharma, G.; Kour, S.; Chadha, B.S.; Ohri, P. Unravelling the Role of Plant Growth Promoting Rhizobacteria in Boosting Plant Growth and Phytoremediation of Heavy Metals. Appl. Soil Ecol. 2024, 199, 105416. [Google Scholar] [CrossRef]
- Qin, H.; Wang, Z.; Sha, W.; Song, S.; Qin, F.; Zhang, W. Role of Plant-Growth-Promoting Rhizobacteria in Plant Machinery for Soil Heavy Metal Detoxification. Microorganisms 2024, 12, 700. [Google Scholar] [CrossRef] [PubMed]
- Gamalero, E.; Glick, B.R. Use of Plant Growth-Promoting Bacteria to Facilitate Phytoremediation. AIMS Microbiol. 2024, 10, 415–448. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Xiong, Z.; Tian, Y.; Zheng, Z.; Liu, Z.; Hu, R.; Wang, Q.; Ao, H.; Yi, Z.; Li, J. Community-Based Mechanisms Underlying the Root Cadmium Uptake Regulated by Cd-Tolerant Strains in Rice (Oryza sativa. L). Front. Plant Sci. 2023, 14, 1196130. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Li, J.; Xiao, S.; Jiang, H.; Liu, L.; Zhong, Q.; Chen, L.; Kan, W.; Yin, F.; Yu, T.; et al. Endophytic Bacterial Communities in Wild Rice (Oryza eichingeri) and Their Effects on Cultivated Rice Growth. Agronomy 2024, 14, 2961. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, H.; Xiao, M.; Liu, H.; He, H.; Peng, L.; Tao, Q.; Tang, X.; Zhang, Y.; Huang, R.; et al. A Plant Growth-Promoting Bacterium Supports Cadmium Detoxification of Rice by Inducing Phenylpropanoid and Flavonoid Biosynthesis. J. Hazard. Mater. 2025, 484, 136795. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Anwar, Y.; Siddiqui, M.F.; Alsulami, N.; Ullah, R. Phytoremediation of Arsenic (As) in Rice Plants, Mediated by Strain IU31 through Antioxidant Responses and Phytohormones Synthesis. Environ. Pollut. 2024, 355, 124207. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Wang, W.; Zheng, X.; Chen, X.; Fu, W.; Wang, G.; Ji, J.; Jin, C.; Guan, C. Improvement of the Cd and Zn Phytoremediation Efficiency of Rice (Oryza sativa) through the Inoculation of a Metal-Resistant PGPR Strain. Chemosphere 2022, 302, 134900. [Google Scholar] [CrossRef] [PubMed]
- Jan, R.; Khan, M.A.; Asaf, S.; Lubna; Lee, I.-J.; Kim, K.M. Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones. Plants 2019, 8, 363. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Jiang, M.; Yuan, M.M.; Wang, E.; Bai, Y.; Crowther, T.W.; Zhou, J.; Ma, Z.; Zhang, L.; Wang, Y.; et al. Root Microbiota Confers Rice Resistance to Aluminium Toxicity and Phosphorus Deficiency in Acidic Soils. Nat. Food 2023, 4, 912–924. [Google Scholar] [CrossRef] [PubMed]
- Carranza-Patiño, M.S.; Torres-Rodriguez, J.A.; Reyes-Pérez, J.J.; Herrera-Feijoo, R.J.; Cedeño-Moreira, Á.V.; Coello Mieles, A.J.; Macías Holguín, C.J.; Chicaiza-Ortiz, C. The Role of Different Rhizobacteria in Mitigating Aluminum Stress in Rice (Oriza sativa L.). Int. J. Plant Biol. 2024, 15, 1418–1436. [Google Scholar] [CrossRef]
- Hazarika, D.J.; Bora, S.S.; Naorem, R.S.; Sharma, D.; Boro, R.C.; Barooah, M. Genomic Insights into Bacillus Subtilis MBB3B9 Mediated Aluminium Stress Mitigation for Enhanced Rice Growth. Sci. Rep. 2023, 13, 16467. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Roychoudhury, A. Bio-Priming with a Novel Plant Growth-Promoting Acinetobacter Indicus Strain Alleviates Arsenic-Fluoride Co-Toxicity in Rice by Modulating the Physiome and Micronutrient Homeostasis. Appl. Biochem. Biotechnol. 2023, 195, 6441–6464. [Google Scholar] [CrossRef] [PubMed]
- Thongnok, S.; Siripornadulsil, W.; Siripornadulsil, S. Mechanisms and Kinetics of Plant Microbe Interactions That Reduce Arsenic Uptake and Loading in Rice Seedlings. Environ. Technol. Innov. 2024, 35, 103673. [Google Scholar] [CrossRef]
- Ghosh, A.; Pramanik, K.; Bhattacharya, S.; Mondal, S.; Ghosh, S.K.; Ghosh, P.K.; Maiti, T.K. Abatement of Arsenic-Induced Phytotoxic Effects in Rice Seedlings by an Arsenic-Resistant Pantoea Dispersa Strain. Environ. Sci. Pollut. Res. 2021, 28, 21633–21649. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Li, N.; Feng, J.; Yin, J.; Wang, Y.; Wang, H.; Wang, W.; Yang, Z. Endophytic Consortium Exhibits Varying Effects in Mitigating Cadmium Toxicity in Rice Cultivars with Distinct Cadmium Accumulation Capacities. Environ. Technol. Innov. 2024, 36, 103833. [Google Scholar] [CrossRef]
- Su, Y.; Shi, Q.; Li, Z.; Deng, H.; Zhou, Q.; Li, L.; Zhao, L.; Yuan, S.; Liu, Q.; Chen, Y. Rhodopseudomonas Palustris Shapes Bacterial Community, Reduces Cd Bioavailability in Cd Contaminated Flooding Paddy Soil, and Improves Rice Performance. Sci. Total Environ. 2024, 926, 171824. [Google Scholar] [CrossRef] [PubMed]
- Thanwisai, L.; Janket, A.; Tran, H.T.K.; Siripornadulsil, W.; Siripornadulsil, S. Low Cd-Accumulating Rice Grain Production through Inoculation of Germinating Rice Seeds with a Plant Growth-Promoting Endophytic Bacterium. Ecotoxicol. Environ. Saf. 2023, 251, 114535. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, Q.; Gao, C.; Lu, Y.; Sheng, Y.; Xiao, M.; Yun, Y.; Selvaraj, J.N.; Zhang, X.; Li, Y.; et al. Endophytic Bacteria for Cd Remediation in Rice: Unraveling the Cd Tolerance Mechanisms of Cupriavidus Metallidurans CML2. J. Hazard. Mater. 2024, 469, 133846. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, S.; Haris, H.; Zarkasi, K.Z.; Ghazali, A.H. Alleviation of Cadmium Stress in Rice Seedlings Inoculated with Enterobacter Tabaci 4M9 (CCB-MBL 5004). Trop. Life Sci. Res. 2024, 35, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Alharby, H.F.; Ali, S. Combined Role of Fe Nanoparticles (Fe NPs) and Staphylococcus aureus L. in the Alleviation of Chromium Stress in Rice Plants. Life 2022, 12, 338. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Sardar, M.F.; Dar, A.A.; Niaz, M.; Ali, J.; Wang, Q.; Zheng, Y.; Luo, Y.; Albasher, G.; Li, F. Integrative Approach to Mitigate Chromium Toxicity in Soil and Enhance Antioxidant Activities in Rice (Oryza sativa L.) Using Magnesium–Iron Nanocomposite and Staphylococcus Aureus Strains. Environ. Geochem. Health 2024, 46, 398. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhang, Y.; Yang, R.; Li, J.; Chen, J.; Wang, J.; Wang, G.; Li, M.; Shi, K. The Utilization of Lysinibacillus Bacterial Powder to Induce Fe Plaque Formation Mitigates Cadmium and Chromium Levels in Rice. J. Hazard. Mater. 2024, 463, 132825. [Google Scholar] [CrossRef] [PubMed]
- Majhi, K.; Let, M.; Bandopadhyay, R. Efficacious Use of Micrococcus Yunnanensis GKSM13 for the Growth of Rice Seedlings under Copper Stress with Elucidation into Genomic Traits. Curr. Plant Biol. 2024, 37, 100318. [Google Scholar] [CrossRef]
- Ibrahim, M.S.; Ikhajiagbe, B. Effects of Plant Growth Promoting Bacteria (PGPB) Rhizo-Inoculation on Soil Physico-Chemical, Bacterial Community Structure and Root Colonization of Rice (Oryza sativa L. Var. Faro 44) Grown in Ferruginous Ultisol Conditions. Sci. World J. 2024, 19, 894–899. [Google Scholar] [CrossRef]
- Kartik, V.P.; Chandwani, S.; Amaresan, N. Augmenting the Bioavailability of Iron in Rice Grains from Field Soils through the Application of Iron-Solubilizing Bacteria. Lett. Appl. Microbiol. 2023, 76, ovac038. [Google Scholar] [CrossRef] [PubMed]
- Khuong, N.Q.; Kantachote, D.; Thuc, L.V.; Huu, T.N.; Nhan, T.C.; Nguyen, P.C.; Thu, L.T.M.; Van, T.B.; Xuan, N.T.; Xuan, L.N.T.; et al. Use of Potent Acid Resistant Strains of Rhodopseudomonas Spp. in Mn-Contaminated Acidic Paddies to Produce Safer Rice and Improve Soil Fertility. Soil Tillage Res. 2022, 221, 105393. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, J.; Qi, L.; Wang, G.; Guan, C.; Li, Q. The Role of Ni- and Cd-Resistant Rhizobacteria in Promoting the Growth of Rice Seedlings and Alleviating the Combined Phytotoxicity of Ni and Cd. Ecotoxicol. Environ. Saf. 2024, 285, 117138. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, P.; Pati, A.M. Bacillus Altitudinis Mediated Lead Bioremediation for Enhanced Growth of Rice Seedlings. Curr. Microbiol. 2024, 81, 410. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.-R.; Chen, H.-B.; Li, Y.-X.; Zhou, Z.-H.; Li, J.-B.; Wang, Y.-Q.; Zhang, H.; Zhang, Y.; Han, Y.-H.; Wang, S.-S. Priestia Sp. LWS1 Is a Selenium-Resistant Plant Growth-Promoting Bacterium That Can Enhance Plant Growth and Selenium Accumulation in Oryza sativa L. Agronomy 2022, 12, 1301. [Google Scholar] [CrossRef]
- Shakeel, M.; Hafeez, F.Y.; Malik, I.R.; Rauf, A.; Jan, F.; Khan, I.; Ijaz, I.; Elsadek, M.F.; Ali, M.A.; Rashid, K.; et al. Zinc Solubilizing Bacteria Synergize the Effect of Zinc Sulfate on Growth, Yield and Grain Zinc Content of Rice (Oryza sativa). Cereal Res. Commun. 2024, 52, 961–971. [Google Scholar] [CrossRef]
- Shakeel, M.; Hafeez, F.; Malik, I.; Farid, A.; Ullah, H.; Ahmed, I.; Gul, H.; Mohibullah, M.; Yasin, M. Serratia marcescens strain FA-4 enhances zinc content in rice grains by activating the zinc translocating enzymes. SABRAO J. Breed. Genet. 2023, 52, 495–507. [Google Scholar] [CrossRef]
- Roy, B.; Maitra, D.; Bhattacharya, A.; Mondal, A.; Pal, N.; Nandy, A.; Bakshi, B.; Ghosh, J.; Mitra, A.K. Alleviation of Abiotic Stress in Oryza sativa by the Application of Novel Polyextremophilic Plant Growth Promoting Bacillus. Biocatal. Agric. Biotechnol. 2024, 60, 103272. [Google Scholar] [CrossRef]
- Kumari, S.; Amit; Jamwal, R.; Mishra, N.; Singh, D.K. Recent Developments in Environmental Mercury Bioremediation and Its Toxicity: A Review. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100283. [Google Scholar] [CrossRef]
- Shrivastava, U.P.; Kumar, A. Characterization and Optimization of 1-Aminocyclopropane-1-Carboxylate Deaminase (ACCD) Activity in Different Rhizospheric PGPR along with Microbacterium Sp. Strain ECI-12A. Int. J. Appl. Sci. Biotechnol. 2013, 1, 11–15. [Google Scholar] [CrossRef]
- Sagar, A.; Sayyed, R.Z.; Ramteke, P.W.; Sharma, S.; Marraiki, N.; Elgorban, A.M.; Syed, A. ACC Deaminase and Antioxidant Enzymes Producing Halophilic Enterobacter Sp. PR14 Promotes the Growth of Rice and Millets under Salinity Stress. Physiol. Mol. Biol. Plants 2020, 26, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yuan, R.; Yang, S.; Dai, Z.; Di, N.; Yang, H.; He, Z.; Wei, M. A Salt-Tolerant Growth-Promoting Phyllosphere Microbial Combination from Mangrove Plants and Its Mechanism for Promoting Salt Tolerance in Rice. Microbiome 2024, 12, 270. [Google Scholar] [CrossRef] [PubMed]
- Khumairah, F.H.; Setiawati, M.R.; Fitriatin, B.N.; Simarmata, T.; Alfaraj, S.; Ansari, M.J.; Enshasy, H.A.E.; Sayyed, R.Z.; Najafi, S. Halotolerant Plant Growth-Promoting Rhizobacteria Isolated From Saline Soil Improve Nitrogen Fixation and Alleviate Salt Stress in Rice Plants. Front. Microbiol. 2022, 13, 905210. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Gan, L.; Wang, C.; He, T. Salt-Tolerant Plant Growth-Promoting Bacteria as a Versatile Tool for Combating Salt Stress in Crop Plants. Arch. Microbiol. 2024, 206, 341. [Google Scholar] [CrossRef] [PubMed]
- Acuña, J.J.; Campos, M.; Mora, M.D.L.L.; Jaisi, D.P.; Jorquera, M.A. ACCD-Producing Rhizobacteria from an Andean Altiplano Native Plant (Parastrephia quadrangularis) and Their Potential to Alleviate Salt Stress in Wheat Seedlings. Appl. Soil Ecol. 2019, 136, 184–190. [Google Scholar] [CrossRef]
- Sun, L.; Lei, P.; Wang, Q.; Ma, J.; Zhan, Y.; Jiang, K.; Xu, Z.; Xu, H. The Endophyte Pantoea Alhagi NX-11 Alleviates Salt Stress Damage to Rice Seedlings by Secreting Exopolysaccharides. Front. Microbiol. 2020, 10, 3112. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Asaf, S.; Khan, A.L.; Adhikari, A.; Jan, R.; Ali, S.; Imran, M.; Kim, K.-M.; Lee, I.-J. Plant Growth-promoting Endophytic Bacteria Augment Growth and Salinity Tolerance in Rice Plants. Plant Biol. J. 2020, 22, 850–862. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Jiang, Z.; Xiang, Z.; Zhou, A.; Wang, C.; Wang, Z.; Zhou, F. Genomic Features of a Plant Growth-Promoting Endophytic Enterobacter Cancerogenus JY65 Dominant in Microbiota of Halophyte Suaeda Salsa. Plant Soil 2024, 496, 269–287. [Google Scholar] [CrossRef]
Element | Dev Stage/ Organ | QTL Name | Candidate Genes | Start (bp) | End (bp) | Lead SNP/Marker | Known Gene | Gene Function | Genetic Material | References |
---|---|---|---|---|---|---|---|---|---|---|
As | Grain | qAs1.2 | Os01g0200700 | 5,478,545 | 5,479,749 | OsMTI-3a | similar to metallothionein-like protein type 3 (MT- 3) (MWMT3) | 598 rice germoplasms include 290 Xian (O. sativa ssp indica) and 308 Geng (O. sativa ssp japonica) rice | [159] | |
qAs1.4 | Os01g0595201 | 23,324,460 | 23,325,125 | heavy metal-associated domain containing protein, expressed | ||||||
qAs1.6 | Os01g0856500 | 36,998,338 | 37,004,643 | OsAUX1 | auxin transporter, primary root and root hair elongation, Cd stress response | |||||
qAs2.3 | Os02g0510600 | 18,252,570 | 18,256,034 | heavy metal-associated transport/detoxification protein | ||||||
qAs2.4 | Os02g0818900 | 35,130,674 | 35,131,877 | heavy metal metal-associated domain transport/detoxification protein domain | ||||||
qAs3.2 | Os03g0346800 | 12,954,637 | 12,959,631 | cation efflux family proteins, putative, expressed | ||||||
qAs3.5 | Os03g0819400 | 34,386,215 | 34,388,174 | heavy metal-associated domain transport/detoxification protein domain | ||||||
qAs4.2 | Os04g0298200 | 13,176,753 | 13,183,064 | cation efflux family proteins, putative, expressed | ||||||
qAs4.3 | Os04g0533900 | 26,684,584 | 26,687,711 | heavy metal-associated domain transport/detoxification protein domain | ||||||
qAs4.4 | Os04g0556000 | 27,829,841 | 27,835,533 | OsHMA5 | heavy metal P-type ATPase, xylem loading of Cu | |||||
qAs5.1 | Os05g0164800 | 3,807,974 | 3,810,780 | OsZIP6 | transition metal, ion transporter | |||||
qAs5.3 | Os05g0382200 | 18,475,523 | 18,479,481 | NaT, OsCHX11 | Na+ transporter | |||||
qAs6.1 | Os06g0143700 | 2,292,664 | 2,298,802 | OsSultr3 | sulfate transporter protein | |||||
qAs8.1 | Os08g0117800 | 981,210 | 984,101 | OsCHX08 | cation/H+ exchanger domain containing protein | |||||
qAs8.2 | Os08g0207500 | 6,267,823 | 6,270,904 | OsZIP4 | similar to Zn transporter ZIP1 | |||||
qAs8.2 | Os08g0205400 | 6,159,123 | 6,161,383 | heavy metal-associated domain containing protein | ||||||
qAs8.2 | Os08g0205500 | 6,161,997 | 6,163,054 | HMA domain containing protein | ||||||
qAs9.1 | Os09g0240500 | 3,073,972 | 3,092,832 | OsSultr4 | sulfate transporter protein | |||||
qAs12.4 | Os12g0581600 | 24,119,866 | 24,123,724 | OsNRAMP7 | ||||||
cis-eQTLs AIR2 | Os11g0572500 | 19,200,000 | 25,800,000 | AIR2 | similar to sulfate transporter 4.1, chloroplast precursor (AST82) | rice core collection of 273 accessions: 192 temperate japonica, 19 tropical japonica, 49 indica, 8 aus, 3 admixture, and 2 aromatic varieties | [160] | |||
trans-eQTLs STR5 (chr.01) | supplementary table Lee et al., 2022 [160] | 25,400,000 | 33,600,000 | STR5 | sulfur transferase | |||||
cis-eQTLs STR8 | Os02g0157600 | 3,000,000 | 3,100,000 | STR8 | sulfur transferase- arsenate As(V) reductase, As(V) As tolerant | |||||
qGAS8; qGAS17 | Os09g0541000 | 21,310,132 | 21,311,479 | OsPIP2;7 | aquaporin involved in As transport | 276 accessions (O. sativa ssp. indica) | [161] | |||
qGAS12 | Os05t0442400 | 21,655,380 | 21,654,183 | OsARM1 | MYB transcription factor responsible for As translocation | |||||
OsPT3 | P transporter | |||||||||
qGAS1 | LOC_Os01g55500 | 31,917,858 | 33,339,115 | nucleobase-ascorbate transporter | ||||||
LOC_Os01g55600 | 32,032,686 | 32,035,011 | nitrate transporter | |||||||
LOC_Os01g55610 | 32,038,018 | 32,040,378 | ||||||||
LOC_Os01g56050 | 32,270,054 | 32,272,147 | MATE protein | |||||||
Seedling stage | qRChlo1 Rel. Chl. content | LOC_Os01g67720 LOC_Os01g67580 LOC_Os01g67770 | 39,282,883 | 39,420,824 | ABC1 family domain containing protein, putative, expressed, multidrug-resistance-associated protein, putative | BRILs (indica WTR1 and japonica cv. Hao-an-nong) | [162] | |||
qAsR8.1 As content root | LOC_Os02g13520 LOC_Os02g11760 LOC_Os02g09720 LOC_Os02g09150 LOC_Os02g13560 LOC_Os02g10760 LOC_Os02g10070 LOC_Os02g10690 LOC_Os02g08500 LOC_Os02g09650 | 6,057,678 | 6,057,678 | OsIAA7—auxin-responsive Aux/IAA gene family member, expressed | ||||||
qAsR8.2 As content root | 7,854,002 | 7,854,002 | ||||||||
qAsS2 As content shoot | 4,342,883 | 7,277,487 | ||||||||
qAsS5.1 As content shoot | 10,886,331 | 14,643,984 | ||||||||
qAsS5.2 As content shoot | 15,469,279 | 16,808,642 | ||||||||
qAsS6 As content shoot | 400,753 | 2,025,629 | ||||||||
qAsS9.1 As content shoot | 18,366,555 | 19,208,050 | ||||||||
qAsS9.2 As content shoot | 20,587,039 | 21,348,882 | ||||||||
qCHC-1 Chl. content | LOC_Os01g13480 | RM10458 | RM5459 | OsGRL1 | glutaredoxin-like protein 1 | 120 doubled haploid (CNDH) lines (O. sativa ssp. indica cv. Cheongcheong and japonica cv. Nagdong) | [163] | |||
qCHC-1 Chl. content | LOC_Os01g13760 | RM10458 | RM5459 | OsDjB1 | DNAJ family protein | |||||
qCHC-3 Chl. content | LOC_Os03g29850 | RM6931 | RM6266 | OsZIP2 | metal cation transporter | |||||
qCHC-3 Chl. content | LOC_Os03g37411 | RM6931 | RM6266 | OsMATE12 | MATE efflux family | |||||
qRFW-12 Root fresh weight | LOC_Os12g08730 | RM247 | RM1261 | OsTRX29 | thioredoxin M5 family | |||||
qRFW-12 Root fresh weight | LOC_Os12g10520 | RM247 | RM1261 | OsMADS33 | MADS-box transcription factor | |||||
qRFW-12 Root fresh weight | LOC_Os12g22110 | RM247 | RM1261 | OsABCG29 | ABC transporter | |||||
qRFW-12 Root fresh weight | LOC_Os12g26880 | RM247 | RM1261 | OsENODL24 | plastocyanin-like proteins | |||||
Cd | Grain | qCd1.2 | Os01g0719300 | 29,987,911 | 29,994,075 | OsSultr3;6 | similar to sulfate transporter 3.1 | 598 rice germoplasm include 290 Xian (O. sativa ssp. indica) and 308 Geng (O. sativa ssp. japonica) rice | [159] | |
qCd7.2 | Os07g0257200 | 8,871,643 | 8,878,905 | OsNRAMP5 | Mn/Cd transporter, Mn/Cd uptake | |||||
qCd7.2 | Os07g0258400 | 8,966,025 | 8,970,880 | OsNRAMP1 | ||||||
qCd1-3 | Os01g0911300 | 43,219,290 | 43,355,290 | rs1_43287290 | OsABCB24 | ABC transporter B family member 24 | 338 mainly indica rice accessions grown in Cd-contaminated soils with different Cd contents | [164] | ||
qCS1 | LOC_Os01g62070 | R35728 | R36152 | OsCS1/OsMTP11 | manganese transporter | BC3F2 (CSSL10 × cv. O. sativa ssp. indica 93-11) | [165] | |||
qGCD7 | LOC_Os12g41090 | 25,444,742 | 25,446,274 | CBL-interacting protein kinase. | 276 accessions O. sativa ssp. indica | [166] | ||||
qGCD9 | LOC_Os02g35000 | 20,994,405 | 20,997,117 | chaperone protein dnaJ 10 | ||||||
qGCD13 | LOC_Os04g33920 | 20,543,471 | 20,543,934 | |||||||
qGCD14 | LOC_Os06g41450 | 24,844,743 | 24,843,829 | vacuole domain containing protein | ||||||
qGCD17 | LOC_Os03g60720 | 34,511,279 | 34,507,597 | |||||||
Seedling stage | qGCdT7 | LOC_Os07g12900 | 6,062,000 | 16,811,000 | OsHMA3 | heavy metal ATPase 3—root-to-shoot Cd translocation | SSSLs (elite indica cv. Huajingxian 74 and indica cv. BG367) | [167] | ||
CAL1—Cd accumulation in leaf 1 | Os02g0629800 | 11,389,878 | 25,871,290 | CAL1 | similar to defensin precursor CAL1 specifically mediates Cd efflux | 119 DH, CSSL, 3651 BC3F3 (indica Cd-over-accumulating cv. Tainan1—TN1 and cv. Chunjiang06—CJ06) | [168] | |||
qDRW2; qDTW2 | Bin202 | ILs (O. nivara x indica 93-11) | [148,169] | |||||||
qRRW6 | Bin581 | |||||||||
qRSW8; qRTW8 | - | Bin774 | ||||||||
qDSW4; qDTW4 | LOC_Os04g27060 | 16,005,150 | 16,001,505 | Bin429 | OsAKR1 | aldo-cheto-reductase | ||||
qDSW4; qDTW4 | LOC_Os04g27190 | 16,068,256 | 16,057,969 | Bin429 | terpene synthase | |||||
qDSW4; qDTW4 | LOC_Os04g25060 | 33,641,298 | 33,642,277 | Bin429 | cyst-rich receptor-like protein kinase | |||||
qDSW4; qDTW4 | LOC_Os04g25560 | 14,819,280 | 14,813,270 | Bin429 | carboxypeptidase homologue OsSCP23 | |||||
Cd/Mn | Grain | qGMN7.1 Grain Mn accumulation | LOC_Os07g15370 | 8,286,947 | 9,313,202 | OsNRAMP5 | major transporter for Mn and Cd | 132 RILs/fine mapping on CSSL-qGMN7.1 (indica cv. 93-11—low grain Mn × indica-like variety PA64s- with maternal origin of japonica, high grain Mn) | [161] | |
Cu | Grain | QTL Cluster 2 | LOC_Os02g10290 | 4,987,000 | 5,798,000 | OsHMA4 | heavy metal-transporting type ATPase | LT-RILs (Tropical japonica cv. Lemont × indica cv. TeQing) | [170,171] | |
Hg | Grain | qHg3.1 | Os03g0161200 | 3,271,150 | 3,276,878 | OsSultr3 | similar to sulfate transporter | 598 rice germoplasms include 290 Xian (O. sativa ssp. indica) and 308 Geng (O. sativa ssp japonica) rice | [168] | |
Pb | Grain | qPb1.1 | Os01g0142800 | 2,294,904 | 2,298,329 | OsNPF8.1 | putative peptide transporter, translocation of dimethylarsinate to rice grain | 598 rice germoplasms include 290 Xian (O. sativa ssp. indica) and 308 Geng (O. sativa ssp. japonica) rice | [159] | |
qPb2.2 | Os02g0172600 | 3,950,459 | 3,955,971 | OsHMA6 | similar to heavy metal ATPase | |||||
qPb2.2 | Os02g0179100 | 4,384,188 | 4,387,935 | heavy metal accumulation, metal-dependent phosphohydrolase | ||||||
qPb5.1 | Os05g0111300 | 605,868 | 606,764 | OsMT2b | metallothionein gene | |||||
qPb6.2 | Os06g0542300 | 20,404,356 | 20,405,495 | heavy metal accumulation–transport–detox protein | ||||||
Na+ | Flowering stage | qGY2.1 | Os02g0187100 | 4,831,212 | 4,833,985 | similar to cyclase | IL50-13 a salt-tolerant IL, cv. notified as Chinsurah Nona 2 (Gosaba 6) (derived by crossing a salt-sensitive (O. sativa ssp. indica) KMR3 ((Karnataka Mandya Restorer 3) × O. rufipogon) IL50-13 IL derived from KMR3 × O. rufipogon after 4 backcrosses with KMR3 | [172] | ||
qGY2.1 | Os02g0194400 | 5,259,822 | 5,266,512 | similar to receptor-like kinase; leucine-rich repeat receptor-like kinase, Cd stress response | ||||||
qGY2.1 | Os02g0294700 | 11,209,135 | 11,211,943 | topoisomerase II-associated protein PAT1 domain containing protein | ||||||
qGY11 | Os11g0606800 | 23,415,625 | 23,418,653 | |||||||
qGY11 | Os11g0618800 | 24,096,264 | 24,097,002 | hypothetical conserved gene | ||||||
qGY12.1 | Os12g0568200 | 23,383,189 | 23,384,177 | metallothionein-like protein type 1 | ||||||
qGY12.1 | Os12g0568500 | 23,390,501 | 23,391,407 | Os1MT1Ld | metallothionein-like protein type 1 | |||||
qGY12.1 | Os12g0566800 | 23,302,307 | 23,306,305 | OsMT1c | ion channel regulatory protein, UNC-93 domain containing protein | |||||
qGY12.1 | Os12g0564800 | 23,167,167 | 23,171,951 | NB-ARC domain containing protein | ||||||
qGY12.1 | Os12g0565100 | 23,182,563 | 23,188,498 | NB-ARC domain containing protein; NB-ARC domain containing protein | ||||||
qGY12.1 | Os12g0566200 | 23,271,514 | 23,272,915 | conserved hypothetical protein | ||||||
qGY12.1 | Os12g0566300 | 23,275,214 | 23,279,087 | subunit A of the heteromeric ATP-citrate lyase, disease resistance | ||||||
qGY12.1 | Os12g0566500 | 23,290,875 | 23,292,674 | |||||||
Reproductive stage | qNFS10.1 N. filled spikelets | 18,730,000 | 19,378,174 | K_id10005402-K_id10006100 | 624 BC1F2 mapping population derived from CSR28 (salt-tolerant Indian cv.) × BRRI dhan28 (salt-sensitive indica Bangladeshi cv.) | [173] | ||||
qPFS10.1% filled spikelets | ||||||||||
qGY10.1 | ||||||||||
qNFS10.1 N. filled spikelets | ||||||||||
qSN-11 Na+ concentration | RM26622 | RM21 | 184 RILs (salt sensitive RP Bio226-indica x salt-tolerant Jarava—indica) | [174] | ||||||
qSN-12 Na+ concentration | RM17 | RM28587 | ||||||||
Roots | qSOR1 | Os07g0614400 | 25,309,034 | 25,311,637 | qSOR1 | surface roots system | O. sativa japonica ecotype Bulu | [175] | ||
Seedling stage | qRRL2 Rel. root length | LOC_Os02g36880 | 21,864,234 | 24,239,570 | LOC_Os02g36880 | 189 RILs (CD—salt-sensitive × WD20342—salt-tolerant) 295 japonica rice materials gathered from Chinese provinces and varieties from Japan, Russia, and Korea | [176] | |||
qRRDW2 Rel. root dry weight | LOC_Os02g37000 LOC_Os02g37080 | NAC transcription factor, negatively regulated salt tolerance at the seedling stage | ||||||||
qRRL2 Rel. root length | 25,860,000 | 27,880,000 | MAGIC (indica four parents, SAGC-08 (A), HHZ5SAL9-Y3-Y1(B), BP1976B-2-3-7-TB-1-1(C), PR33282-B-8-1-11-1-1 (D), and 221 DC1) | [177] | ||||||
qSLST1/qRDSW1/qRB1 shoot length under salt treatment, rel. dry shoot weight, rel. biomass (multi-trait QTL) | LOC_Os01g66280 | 38,180,000 | 38,570,000 | putative transcriptional regulator | MAGIC (indica four parents: SAGC-08 (A), HHZ5SAL9-Y3-Y1(B), BP1976B-2-3-7-TB-1-1(C), PR33282-B-8-1-11-1-1 (D), and 221 DC1) | |||||
q02_02 Rel. root dry weight | LOC_Os02g18690 | 10,897,172 | 10,901,913 | OsBURP04 | BURP domain containing protein | 231 O. sativa ssp. japonica accessions | [178] | |||
q02_02 Rel. root dry weight | LOC_Os02g18880 | 11,015,828 | 11,017,808 | OsCBL7 | calcineurin B, putative, expressed | |||||
q02_02 Rel. root dry weight | LOC_Os02g18930 | 11,057,896 | 11,059,975 | OsCBL8 | calcineurin B, putative, expressed | |||||
q02_02 Rel. root dry weight | LOC_Os02g21009 | 12,432,287 | 12,448,557 | OsCAX1c | Na+/Ca2+ exchanger protein, putative | |||||
q02_06 Leaf area | LOC_Os02g36880 | 22,258,833 | 22,260,681 | OsNAC1 | no apical meristem protein, putative | |||||
q02_06 Leaf area | LOC_Os02g36974 | 22,333,281 | 22,337,713 | GF14E | 14-3-3 protein, putative, expressed | |||||
q03_02 Rel. Leaf area | LOC_Os03g27280 | 15,628,100 | 15,632,465 | SAPK1 | CAMK_like.19 Ca2+/calmodulin dependent protein kinases, expressed | |||||
q03_03 Leaf area | LOC_Os03g27960 | 16,061,151 | 16,065,169 | OsCAX2 | Na+/Ca2+ exchanger protein, putative | |||||
q03_03 Leaf area | LOC_Os03g28120 | 16,163,989 | 16,167,050 | OsKAT1 | K+ channel protein, putative, expressed | |||||
q06_02 Rel. Leaf area | LOC_Os06g10880 | 5,677,080 | 5,682,126 | OsABF2 | bZIP transcription factor, putative | |||||
qST1.1 Salinity Tolerance | Os01g0917400 Os01g0926700 Os01g0926800 Os01g0932500 | 40,006,067 | 40,907,438 | 40,300,000 | OsHAK6 | high-affinity K+ transporter 6 (Os01g0932500) | RILs F2, 4 n = 103 (DJ15 (salt-tolerant IL derived from Dongxiang (O. rufipogon) × Ningjing 16 (NJ16)) × cv. Koshihikari japonica salt-sensitive) | [132] | ||
qST1.2DJ15 Salinity Tolerance | Os01g0276800 Os01g0279100 Os01g0281200 Os01g0293000 Os01g0295900 Os01g0297700 Os01g0298301 Os01g0298400 Os01g0298500 Os01g0299300 Os01g0302500 Os01g0305900 Os01g0307500 Os01g0310500 | 9,874,379 | 11,666,398 | 10,600,000 | OsSKC1/HKT8/HKT1;5 | Protein kinase, catalytic domain containing protein (Os01g0307500) | ||||
qST6DJ15 Salinity Tolerance | Os06g0635700 Os06g0636100 Os06g0636600 Os06g0636700 Os06g0636800 Os06g0637800 Os06g0639100 Os06g0639200 Os06g0639500 Os06g0640201 Os06g0640800 Os06t0641066 Os06g0641575 Os06g0642550 Os06g0643000 Os06g0643500 Os06g0644600 Os06g0645100 | 25,600,000 | 26,324,093 | 25,600,000 | ||||||
Na+/K+ | Reproductive stage | qSTR-2 Salinity tolerance rating | RM110 | RM423 | 184 RILs (salt-sensitive RP Bio226 indica × salt-tolerant Jarava indica) | [174] | ||||
qSTR-11 Salinity tolerance rating | RM286 | RM3717 | ||||||||
qSNK-12.1 Na+/K+ concentration | RM17 | RM28587 | 184 RILs (salt-sensitive RP Bio226 indica × salt-tolerant Jarava—indica) | [174] | ||||||
qSNK-12.2 Na+/K+ concentration | ||||||||||
Seedling stage | Saltol QTL | Os01g0307500 | 10,690,930 | 12,591,394 | OsHKT1;5 (SKC1) | high-affinity K+ transporter, low Na+ uptake, high K+ uptake and Na+/K+ homeostasis in shoots | F8 RILs/BC3F4 NILs (ssp. indica landrace Pokkali × salt-sensitive ssp. indica cv. IR29) | [179,180,181,182] |
Element | Microorganism | Experimental Setup | Effect on Plants | References |
---|---|---|---|---|
Al | SynCom, including 2 strains each of Paenibacillus, Lysinibacillus, and Burkholderia, three strains of Bacillus, and one strain each of Leucobacter, Pseudomonas and Rhodococcus | Pot and field | Improved rice Al resistance and alleviated P deficiency. Reduced root growth angle for P acquisition in topsoil. | [254] |
Serratia marcescens (MO4), Enterobacter asburiae (MO5), Pseudomonas veronii (R4), and Pseudomonas protegens (CHAO) | Pot | Promoted plant growth, increased plant height, mitigated Al toxicity reducing its bioavailability through Al3+ chelation, and reduced plant uptake by enhancing EPS secretion. | [255] | |
Bacillus subtilis | Pot | Promoted plant growth and productivity in terms of plant height, chlorophyll content, tiller number, panicle number, grain yield, root growth, and root biomass. | [256] | |
As | Bacillus subtilis IU31 | Pot | Increased bioconcentration and bioaccumulation factors in shoot and roots. Improved plant by health restoring normal levels of GST, CAT, GSH, and H2O2. Contributed to As detoxification, thus increasing its uptake. | [251] |
Acinetobacter indicus | Pot | Acceleration of Fe, Cu, and Ni uptake; activation of SOD, CAT, guaiacol peroxidase, glutathione peroxidase, glutathione-s-transferase, reduction in oxidative stress, MDA, and methylglyoxal generation. | [257] | |
Cupriavidus taiwanensis KKU2500–3 and Pseudomonas stutzeri 4.44 | Seedling stage | Promoted plant growth, reduced toxicity and accumulation in roots and shoots, increased enzymatic and non-enzymatic antioxidant compounds, and reduced oxidative stress. | [258] | |
Pantoea dispersa | Hydroponic | Increased shoot and root length, fresh and dry weight, seedling vigor index, total sugar content, total protein content, chlorophyll, and reduced MDA and As concentration. | [259] | |
Cd | Pseudomonas koreensis | Hydroponic and pot | Promoted plant growth; reduced Cd shoot, root, and grain concentration; upregulated the synthesis of phenylpropanoids and flavonoids; increased the activity of antioxidant enzymes, proline, and GSH; reduced MDA and H2O2 levels. | [251] |
Pseudomonas sp. 4N2 and Bacillus sp. TB1 | Hydroponic | Promoted plant growth, increased antioxidant activity, reduced in Cd transfer from roots to shoots, bacterial immobilization, and root phytostabilization. | [260] | |
Rhodopseudomonas palustris SC06 | Pot | Shaped bacterial community; reduced bioavailable Cd; upregulated sugar, organic acids, and antioxidant enzymes in rice roots; reduced Cd uptake in rice seedlings; reduced Cd concentration in roots, stems, leaves, and grains; improved photosynthetic efficiency in leaves. | [261] | |
Herbaspirillim sp. and Bacillus cereus | Hydroponic | Herbaspirillum reduced Cd uptake; Bacillus promoted Cd uptake. Effects on endophytic bacterial community in roots. | [248] | |
Cupriavidus taiwanensis KKU2500–3 | Pot | Reduced Cd translocation to stems, leaves, and grain; reduced Cd concentration in grains; increased in leaves pigments. | [262] | |
Cupriavidus metallidurans CML2 | Pot | Plant growth promotion (IAA production and phosphorus solubilization, siderophore production). Increase in root length and decrease in Cd bioaccumulation in seedlings and translocation rates. | [263] | |
Enterobacter tabaci 4M9 | Seedling stage | Promoted plant growth, reduced oxidative stress and electrolyte leakage, CAT, and SOF. | [264] | |
Cr | Staphylococcus aureus L. | Seedling stage | Transformation to a less toxic form of Cr, reduction in plant Cr uptake, and enhanced chlorophyll content. | [265] |
Staphylococcus aureus L. | Pot | Plant growth and yield promotion; increased SPAD values, total chlorophyll, and carotenoids; reduced MDA, H2O2, and electrolyte leakage in shoots; increased POX, CAT, APX, and SOD activity; enhanced macro- and micronutrients in shoots; and reduced Cr concentration in roots, shoots, and grains. | [266] | |
Cr+Cd | Lysinibacillus sp. OR-15 | Pot | Promoted plant growth and reproduction. Alleviated Cr and Cd stress. Fe plaques formed around roots increased aboveground Cr and Cd concentrations (immobilization), but they were reduced in the stems and seeds. | [267] |
Cu | Micrococcus yunnanensis GKSM13 | Seedling stage | Increased plant length and seed vigor index, reduced Cu stress, increased SOD, CAT, APOX, and GPOX activity, and reduced MDA concentration and DPPH inhibition. | [268] |
Fe | Bacillus cereus GGBSU-1, Klebsiella variicola AUH-KAM-9 and Proteus mirabilis TL14-1 | Pot | Increase in bioavailability of P and other micronutrients, reducing the nutrient limitations occurring in ferruginous soils and limiting Fe toxicity by Fe chelation. Positive effects also on soil–microbiota colonization. | [269] |
Bacillus cereus MZ157036, Staphylococcus coagulans MZ157032, Pseudomonas aeruginosa MZ157041, B. paramycoides MZ157031, Ps. aeruginosa MZ157040, Ps. aeruginosa MZ157039, B. tequilensis MN715782, and B. wiedmannii MN715783 | Field | Plant growth and nutrient uptake promotion. Increase in N, P, and K uptake. Increase in Fe uptake in roots, shoots, and grains. | [270] | |
Mn | Rhodopseudomonas palustris TLS12, VNS19, VNS32, VNS62 and VNW95, and Rhodopseudomonas harwoodiae TLW42 | Pot and field | Promoted plant growth and production and soil fertility; reduced Mn plant concentration. | [271] |
Ni + Cd | Enterobacter ludwigii SAK5 and Exiguobacterium indicum SA22 | Hydroponic | Promoted plant growth, increased chlorophyll content, increased root accumulation of both Cd and Ni, upregulated metal stress-responsive genes, and protected rice from heavy metal hyperaccumulation. | [253] |
Pseudomonas sp., Chryseobacterium sp., and Enterobacter sp. | Pot | Promoted plant growth, increased antioxidant enzyme activity in seedlings, and mitigated oxidative damage. | [272] | |
Pb | Bacillus altitudinis IHBT-705 | Pot | Improved shoot length, root length, total roots, chlorophyll content, antioxidant enzyme activity, and decreased Pb concentration in rice plants. | [273] |
Se | Priestia sp. LWS1 | Pot | Increased rice biomass and Se concentration. | [274] |
Zn +Cd | Bacillus sp. ZC3-2-1 | Pot | Decreased Zn and Cd concentrations in soil and increased phytoextraction and immobilization. Increased rice biomass. No change in Zn and Cd content per biomass unit. No negative effect on crop food safety. | [252] |
Zn | Bacillus sp. SH-10 and Bacillus cereus SH-17 | Field | Improved yield and grain Zn content alone and in combination with chemical fertilization. Increase in chlorophyll content and Zn-requiring enzymes. | [275] |
S. marcescens FA-4 | Pot and field | Promoted plant growth, yield, and grain Zn content; increased SOD and CAT enzyme activity. | [276] |
Element | Microorganism | Experimental Setup | Effect on Plants | References |
---|---|---|---|---|
NaCl | Bacillus NMTD17, Bacillus GBSW22 | Pot | Increased relative abundance of rhizobacterial species; strong biofilm formation up to 16% of NaCl concentration. Decreased levels of ROS Upregulation of: DegU and DegS genes (stress mitigating response) SodA and SodB (superoxide dismutase production) OpuAC and OpuD genes (betaine metabolites) HPII gene (catalase regulation) ComA gene (quorum-sensing regulation) Under high saline conditions (200 mmol), NMTD17 promoted: Highest vigor index (VI) in rice seedlings, Increased root morphological parameters (volume, area, length, diameter and tips) | [243] |
NaCl | Bacillus subtilis BRAM_G1, Bacillus subtilis BRAM_G2, Mesobacillus subterraneus BRAM_Y2, Brevibacillus parabrevis BRAM_Y3 | Pot, 5% salt | Increased chlorophyll concentration, seed weight, grain filling, plant height and reproductive parameters | [277] |
NaCl | Bacillus marisflavi, Pantoea stewartia | Pot | Increased shoot and root length Increased L-glutamate, aspartic acid, betaine metabolites, L-lysine, soluble sugars, and K+ Decreases MDA and Na+ Promoted salt tolerance of C. islandicus | [281] |
NaCl | Curtobacterium oceanosedimentum, Curtobacterium luteum, Enterobacter ludwigii, E. tabaci, Bacillus cereus, Micrococcus yunnanensis | Pot, 150 mM NaCl | Increased shoot and root length, biomass, and fresh and dry weight Increased ABA content, GSH amount, and soluble sugars Upregulated the OsYUCCA1 gene (IAA biosynthesis) and OsPIN1 gene (auxins production) | [286] |
NaCl | Enterobacter cancerogenus (JY65) | 48-well plate | Increased weight, height and root length of plants Increased GSH, ascorbic acid, APX, SOD, POD, CAT, and K+ Decreased Na+, ROS, and MDA Increased biofilm formation (bssSR), exopolysaccharide producing protein YjbE, and colonic acid biosynthesis-related genes (wcaD, wzbc, etkp) Genes related to PGP traits identified: IAA production, polyamines, N2-fixation, siderophores, volatile organic compound, antimicrobial compound, and phosphate solubilization | [287] |
NaCl | P. alhagi NX-11 | Hydroponic, 100 mM NaCl | Increased production of antioxidant enzymes SOD, POD, and CAT on the 7th day after salt stress treatment Increased EPSs and MDA content | [285] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitiello, G.; Goretti, D.; Marè, C.; Delmastro, E.; Siviero, G.; Collani, S.; Mica, E.; Valè, G. Rice Adaptation to Abiotic Stresses Caused by Soil Inorganic Elements. Int. J. Mol. Sci. 2025, 26, 7116. https://doi.org/10.3390/ijms26157116
Vitiello G, Goretti D, Marè C, Delmastro E, Siviero G, Collani S, Mica E, Valè G. Rice Adaptation to Abiotic Stresses Caused by Soil Inorganic Elements. International Journal of Molecular Sciences. 2025; 26(15):7116. https://doi.org/10.3390/ijms26157116
Chicago/Turabian StyleVitiello, Giulia, Daniela Goretti, Caterina Marè, Edoardo Delmastro, Giorgia Siviero, Silvio Collani, Erica Mica, and Giampiero Valè. 2025. "Rice Adaptation to Abiotic Stresses Caused by Soil Inorganic Elements" International Journal of Molecular Sciences 26, no. 15: 7116. https://doi.org/10.3390/ijms26157116
APA StyleVitiello, G., Goretti, D., Marè, C., Delmastro, E., Siviero, G., Collani, S., Mica, E., & Valè, G. (2025). Rice Adaptation to Abiotic Stresses Caused by Soil Inorganic Elements. International Journal of Molecular Sciences, 26(15), 7116. https://doi.org/10.3390/ijms26157116