Molecular Mechanisms of Stress Adaptation and Quality Control in Horticultural Plants

A special issue of Horticulturae (ISSN 2311-7524). This special issue belongs to the section "Biotic and Abiotic Stress".

Deadline for manuscript submissions: 10 March 2026 | Viewed by 146

Special Issue Editor

Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, Spicy Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
Interests: Stress response and quality control mechanism for horticultural products

Special Issue Information

Dear Colleagues,

Horticultural plants face relentless challenges in the form of abiotic stresses (drought, salinity, temperature extremes) and biotic stresses (pathogens, pests), reducing yield and quality essential for global food security and economic value. Therefore, enhancing stress adaptation and improving quality control in horticultural plants requires reliable and precise orchard management based on up-to-date knowledge.

This Special Issue explores into the intricate molecular networks underpinning plant stress adaptation and quality control, including signaling cascades, phytohormones, gas signaling, downstream adaptive responses, transcription factor activation, and crucial epigenetic and post-translational modifications.

It aims to collect cutting-edge research papers on the stress response and quality improvement practices of horticultural plants, providing advanced technical insights for increasing the yield and quality of horticultural crops.

Dr. Lijuan Wei
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Horticulturae is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • horticultural plants
  • yield and quality control
  • stress response
  • gas signaling
  • phytohormones
  • post-translational modifications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 16524 KB  
Article
Transcriptome-Wide Survey of LBD Transcription Factors in Actinidia valvata Under Waterlogging Stress and Functional Analysis of Two AvLBD41 Members
by Zhi Li, Ling Gan, Xinghui Wang, Wenjing Si, Haozhao Fang, Jinbao Fang, Yunpeng Zhong, Yameng Yang, Fenglian Ma, Xiaona Ji, Qiang Zhang, Leilei Li and Tao Zhu
Horticulturae 2025, 11(12), 1482; https://doi.org/10.3390/horticulturae11121482 - 8 Dec 2025
Abstract
Actinidia valvata, a promising rootstock for kiwifruit cultivation, demonstrates superior waterlogging tolerance compared with commercial cultivars. Lateral organ boundaries domain (LBD) transcription factors (TFs) are known to be pivotal in plant responses to abiotic stress. Nevertheless, the characterization of the LBD family [...] Read more.
Actinidia valvata, a promising rootstock for kiwifruit cultivation, demonstrates superior waterlogging tolerance compared with commercial cultivars. Lateral organ boundaries domain (LBD) transcription factors (TFs) are known to be pivotal in plant responses to abiotic stress. Nevertheless, the characterization of the LBD family under waterlogging stress in A. valvata remains limited. In this study, 26 AvLBD genes were identified from a transcriptome dataset, with the majority classified into phylogenetic Class II. Under waterlogging stress, transcript accumulation of most AvLBD41 members, particularly AvLBD41_11 and AvLBD41_7, was markedly increased in roots. Bimolecular fluorescence complementation (BiFC) assays indicated that AvLBD41_7 heterodimerizes with both the AP2/ERF activator AvERF75 and the trihelix repressor AvHRA1, whereas AvLBD41_11 only interacts with AvERF75. Neither AvLBD41 isoform interacts with AvERF73, thereby defining distinct components of a waterlogging-responsive module. Yeast-based assays revealed an absence of transactivation activity for AvLBD41_7, and transient expression analyses confirmed its exclusive nuclear localization. The promoters of both AvLBD41_11 and AvLBD41_7 harbor numerous cis-elements responsive to hormones and abiotic stresses. An AvLBD41_7-derived PCR marker could be used to distinguish A. valvata from A. deliciosa accessions. Collectively, these findings provide a comprehensive functional annotation of the LBD gene family in A. valvata and establish AvLBD41_7 as a potential molecular target for future kiwifruit breeding programs aimed at waterlogging resilience. Full article
Show Figures

Graphical abstract

Back to TopTop