You are currently viewing a new version of our website. To view the old version click .

Genetic Networks and Gene Regulation Mechanisms for Quorum Sensing and Quorum Quenching in Bacteria

This special issue belongs to the section “Microbial Genetics and Genomics“.

Special Issue Information

Dear Colleagues,

Many bacterial activities, including the synthesis of secondary metabolites, enzymes and virulence factors, are modulated by quorum sensing (QS), a sophisticated cell-to-cell communication mechanism based on small diffusible molecules that alter the expression of a whole network of genes (up to 25% of the genome in some cases) when population density reaches a critical threshold. The number of chemically different molecules described as QS signals has constantly increased in the past two decades. Molecular mimics and antagonists produced by eukaryotic organisms and examples of quorum quenching activities that interfere with bacterial QS have also been identified, and may be more widespread than initially expected.

There is still much to be learned about the regulatory mechanisms in which these molecules participate and how QS enables bacteria to coordinate activities, an issue that has significant interest from the perspective of social evolution, fitness and the benefits at the population level associated with costly co-operative behaviours. Inhibiting gene expression when population density is low could serve this purpose, for example, by delaying virulence factor production until enough cells amass to produce effective levels. Restrained gene expression may also benefit groups by enabling coordinated “sneak attacks” during infection, and hiding factors that could be recognized as antigens by the immune system until a large force assembles.

In complex environments, the size of the quorum is not fixed but varies according to the relative rates of production and loss of signal molecules, which depend on many naturally fluctuating environmental parameters. Thus, quorum sensing can also be considered in the context of ‘diffusion sensing’ (DS), ‘compartment sensing’ (CS) or ‘efficiency sensing’ (ES), where the signal molecule supplies information with respect to the local environment and spatial distribution of the cells rather than, or as well as, cell population density.

This Special Issue will explore recent advances and future research avenues on quorum sensing and quorum quenching genomics and genetic networks, and molecular mechanisms of gene expression regulation mediated by signalling molecules.

Dr. Manuel Espinosa Urgel
Dr. Inmaculada Llamas
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Genes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cell–cell signalling
  • gene expression
  • regulatory networks
  • sociomicrobiology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Published Papers

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Genes - ISSN 2073-4425