Special Issue "Poultry Genetics, Breeding and Biotechnology"

A special issue of Genes (ISSN 2073-4425). This special issue belongs to the section "Animal Genetics and Genomics".

Deadline for manuscript submissions: 15 March 2021.

Special Issue Editor

Prof. Jun–Heon Lee

Guest Editor
Division of Animal & Dairy Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea
Interests: poultry; genetics; genomics; breeding; performance; population and evolutionary genetics; marker assisted selection

Special Issue Information

Dear Colleagues,

Poultry species are becoming more and more important for providing meat and eggs to humans. Since the poultry species were domesticated, humans have selected and bred poultry species, mostly for production traits. Additionally, there are still some of the native poultry breeds documented, indicating that further improvement is possible for disease resistance etc. Except for providing meat and eggs, the major species of poultry—chicken—has been used for the elucidation of developmental biology, virology, oncogenesis and immunology. 

Since the release of the first draft of the chicken genome in 2004, research in the “Poultry Genetics, Breeding and Biotechnology” areas have enormously improved. However, there are numerous poultry characteristics and economic traits with unknown genetic backgrounds. With the high-throughput genetic and genomic techniques available today, the research community has the possibility to also unravel the complex traits of the poultry. Therefore, this Special Issue in Genes will highlight the cutting edge of poultry Genetics, Breeding and Biotechnology issues. The Issue will provide an overview of recent developments in this field of research, including perspectives on current and upcoming challenges.

Prof. Jun–Heon Lee
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Genes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Poultry
  • Genetics and genomics
  • Breeding
  • Biotechnology
  • Increase productivity
  • Diversity
  • Health and sustainability

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
High Levels of Genetic Variation in MHC-Linked Microsatellite Markers from Native Chicken Breeds
Genes 2021, 12(2), 240; https://doi.org/10.3390/genes12020240 - 08 Feb 2021
Abstract
The major histocompatibility complex (MHC) is a highly polymorphic gene region that regulates cellular communication in all specific immune responses. In this study, we investigated 11 microsatellite (MS) markers in the MHC-B region of chicken populations from four countries: Sri Lanka, Bangladesh, [...] Read more.
The major histocompatibility complex (MHC) is a highly polymorphic gene region that regulates cellular communication in all specific immune responses. In this study, we investigated 11 microsatellite (MS) markers in the MHC-B region of chicken populations from four countries: Sri Lanka, Bangladesh, South Korea, and Nigeria. The MS markers were divided into two sets. Set 1 included five novel MS markers, which we assessed using 192 samples from 21 populations. Set 2 included six previously reported markers, which we assessed using 881 samples from 29 populations. The Set 1 MS markers had lower polymorphism (polymorphic information content (PIC) < 0.5) than the Set 2 markers (PIC = 0.4–0.9). In all populations, the LEI0258 marker was the most polymorphic, with a total of 38 alleles (PIC = 0.912, expected heterozygosity (He) = 0.918). Local populations from Sri Lanka, Bangladesh, and Nigeria had higher allele diversity and more haplotypes for Set 2 MS markers than Korean and commercial populations. The Sri Lankan Karuwalagaswewa village population had the highest MHC diversity (mean allele number = 8.17, He = 0.657), whereas the white leghorn population had the lowest (mean allele number = 2.33, He = 0.342). A total of 409 haplotypes (89 shared and 320 unique), with a range of 4 (Rhode Island red) to 46 (Karuwalagaswewa village (TA)), were identified. Among the shared haplotypes, the B21-like haplotype was identified in 15 populations. The genetic relationship observed in a neighbour-joining tree based on the DA distance agreed with the breeding histories and geographic separations. The results indicated high MHC diversity in the local chicken populations. The difference in the allelic pattern among populations presumably reflects the effects of different genotypes, environments, geographic variation, and breeding policies in each country. The selection of MHC allele in domestic poultry can vary due to intensification of poultry production. Preserved MHC diversity in local chicken provides a great opportunity for future studies that address the relationships between MHC polymorphisms and differential immune responses. Full article
(This article belongs to the Special Issue Poultry Genetics, Breeding and Biotechnology)
Show Figures

Figure 1

Open AccessArticle
Identification of microRNA-Associated-ceRNA Networks Regulating Crop Milk Production in Pigeon (Columba livia)
Genes 2021, 12(1), 39; https://doi.org/10.3390/genes12010039 - 30 Dec 2020
Abstract
Pigeon belongs to altrices. Squab cannot forage independently. Nutrition can only be obtained from crop milk secreted by male and female pigeon. miRNA could regulate many biological events. However, the roles of miRNA and ceRNA in regulating crop milk production are still unknown. [...] Read more.
Pigeon belongs to altrices. Squab cannot forage independently. Nutrition can only be obtained from crop milk secreted by male and female pigeon. miRNA could regulate many biological events. However, the roles of miRNA and ceRNA in regulating crop milk production are still unknown. In this study, we investigated the miRNAs expression profile of female pigeon crop, explored the potential key genes, and found the regulatory mechanisms of crop milk production. A total of 71 miRNAs were identified differentially expressed significantly. Meanwhile, miR-20b-5p, miR-146b-5p, miR-21-5p, and miR-26b-5p were found to be the key miRNAs regulating lactation. Target genes of these miRNAs participated mainly in cell development; protein and lipid synthesis; and ion signaling processes, such as cell-cell adhesion, epithelial cell morphogenesis, calcium signaling pathway, protein digestion, and absorption. In the ceRNA network, miR-193-5p was located in the central position, and miR-193-5p/CREBRF/LOC110355588, miR-460b-5p/GRHL2/MSTRG.132954, and miR-193-5p/PIK3CD/LOC110355588 regulatory axes were believed to affect lactation. Collectively, our findings enriched the miRNA expression profile of pigeon and provided novel insights into the microRNA-associated-ceRNA networks regulating crop milk production in pigeon. Full article
(This article belongs to the Special Issue Poultry Genetics, Breeding and Biotechnology)
Show Figures

Figure 1

Open AccessArticle
Production of Recombinant Monoclonal Antibodies in the Egg White of Gene-Targeted Transgenic Chickens
Genes 2021, 12(1), 38; https://doi.org/10.3390/genes12010038 - 30 Dec 2020
Abstract
Increased commercial demand for monoclonal antibodies (mAbs) has resulted in the urgent need to establish efficient production systems. We previously developed a transgenic chicken bioreactor system that effectively produced human cytokines in egg whites using genome-edited transgenic chickens. Here, we describe the application [...] Read more.
Increased commercial demand for monoclonal antibodies (mAbs) has resulted in the urgent need to establish efficient production systems. We previously developed a transgenic chicken bioreactor system that effectively produced human cytokines in egg whites using genome-edited transgenic chickens. Here, we describe the application of this system to mAb production. The genes encoding the heavy and light chains of humanized anti-HER2 mAb, linked by a 2A peptide sequence, were integrated into the chicken ovalbumin gene locus using a CRISPR/Cas9 protocol. The knock-in hens produced a fully assembled humanized mAb in their eggs. The mAb expression level in the egg white was 1.4–1.9 mg/mL, as determined by ELISA. Furthermore, the antigen binding affinity of the anti-HER2 mAb obtained was estimated to be equal to that of the therapeutic anti-HER2 mAb (trastuzumab). In addition, antigen-specific binding by the egg white mAb was demonstrated by immunofluorescence against HER2-positive and -negative cells. These results indicate that the chicken bioreactor system can efficiently produce mAbs with antigen binding capacity and can serve as an alternative production system for commercial mAbs. Full article
(This article belongs to the Special Issue Poultry Genetics, Breeding and Biotechnology)
Show Figures

Figure 1

Open AccessArticle
Effect of 20(S)-Hydroxycholesterol on Multilineage Differentiation of Mesenchymal Stem Cells Isolated from Compact Bones in Chicken
Genes 2020, 11(11), 1360; https://doi.org/10.3390/genes11111360 - 17 Nov 2020
Abstract
Bone health and body weight gain have significant economic and welfare importance in the poultry industry. Mesenchymal stem cells (MSCs) are common progenitors of different cell lineages such as osteoblasts, adipocytes, and myocytes. Specific oxysterols have shown to be pro-osteogenic and anti-adipogenic in [...] Read more.
Bone health and body weight gain have significant economic and welfare importance in the poultry industry. Mesenchymal stem cells (MSCs) are common progenitors of different cell lineages such as osteoblasts, adipocytes, and myocytes. Specific oxysterols have shown to be pro-osteogenic and anti-adipogenic in mouse and human MSCs. To determine the effect of 20(S)-hydroxycholesterol (20S) on osteogenic, adipogenic, and myogenic differentiation in chicken, mesenchymal stem cells isolated from compact bones of broiler chickens (cBMSCs) were subjected to various doses of 20S, and markers of lineage-specific mRNA were analyzed using real-time PCR and cell cytochemistry. Further studies were conducted to evaluate the molecular mechanisms involved in lineage-specific differentiation pathways. Like human and mouse MSCs, 20S oxysterol expressed pro-osteogenic, pro-myogenic, and anti-adipogenic differentiation potential in cBMSCs. Moreover, 20(S)-Hydroxycholesterol induced markers of osteogenic genes and myogenic regulatory factors when exposed to cBMSCs treated with their specific medium. In contrast, 20S oxysterol suppressed expression of adipogenic marker genes when exposed to cBMSCs treated with OA, an adipogenic precursor of cBMSCs. To elucidate the molecular mechanism by which 20S exerts its differentiation potential in all three lineages, we focused on the hedgehog signaling pathway. The hedgehog inhibitor, cyclopamine, completely reversed the effect of 20S induced expression of osteogenic and anti-adipogenic mRNA. However, there was no change in the mRNA expression of myogenic genes. The results showed that 20S oxysterol promotes osteogenic and myogenic differentiation and decreases adipocyte differentiation of cBMSCs. This study also showed that the induction of osteogenesis and adipogenesis inhibition in cBMSCs by 20S is mediated through the hedgehog signaling mechanism. The results indicated that 20(S) could play an important role in the differentiation of chicken-derived MSCs and provided the theory basis on developing an intervention strategy to regulate skeletal, myogenic, and adipogenic differentiation in chicken, which will contribute to improving chicken bone health and meat quality. The current results provide the rationale for the further study of regulatory mechanisms of bioactive molecules on the differentiation of MSCs in chicken, which can help to address skeletal health problems in poultry. Full article
(This article belongs to the Special Issue Poultry Genetics, Breeding and Biotechnology)
Show Figures

Figure 1

Open AccessArticle
Induction of Chicken Host Defense Peptides within Disease-Resistant and -Susceptible Lines
Genes 2020, 11(10), 1195; https://doi.org/10.3390/genes11101195 - 14 Oct 2020
Abstract
Host defense peptides (HDPs) are multifunctional immune molecules that respond to bacterial and viral pathogens. In the present study, bone marrow-derived cells (BMCs) and chicken embryonic fibroblasts (CEFs) were cultured from a Leghorn line (Ghs6) and Fayoumi line (M15.2), which are inbred chicken [...] Read more.
Host defense peptides (HDPs) are multifunctional immune molecules that respond to bacterial and viral pathogens. In the present study, bone marrow-derived cells (BMCs) and chicken embryonic fibroblasts (CEFs) were cultured from a Leghorn line (Ghs6) and Fayoumi line (M15.2), which are inbred chicken lines relatively susceptible and resistant to various diseases, respectively. The cells were treated by lipopolysaccharide (LPS) or polyinosinic-polycytidylic acid (poly(I:C)) and, subsequently, mRNA expression of 20 chicken HDPs was analyzed before and after the stimulation. At homeostasis, many genes differed between the chicken lines, with the Fayoumi line having significantly higher expression (p < 0.05) than the Leghorn line: AvBD1, 2, 3, 4, 6, and 7 in BMCs; CATH1, CATH3, and GNLY in CEFs; and AvDB5, 8, 9, 10, 11, 12, 13 in both BMCs and CEFs. After LPS treatment, the expression of AvBD1, 2, 3, 4, 5, 9, 12, CATH1, and CATHB1 was significantly upregulated in BMCs, but no genes changed expression in CEFs. After poly(I:C) treatment, AvBD2, 11, 12, 13, CATHB1 and LEAP2 increased in both cell types; CATH2 only increased in BMCs; and AvBD3, 6, 9, 14, CATH1, CATH3, and GNLY only increased in CEFs. In addition, AvBD7, AvBD14, CATH1, CATH2, GNLY, and LEAP2 showed line-specific expression dependent upon cell type (BMC and CEF) and stimulant (LPS and poly(I:C)). The characterization of mRNA expression patterns of chicken HDPs in the present study suggests that their functions may be associated with multiple types of disease resistance in chickens. Full article
(This article belongs to the Special Issue Poultry Genetics, Breeding and Biotechnology)
Show Figures

Figure 1

Open AccessArticle
Metabolomic Analysis of SCD during Goose Follicular Development: Implications for Lipid Metabolism
Genes 2020, 11(9), 1001; https://doi.org/10.3390/genes11091001 - 26 Aug 2020
Abstract
Stearoyl-CoA desaturase (SCD) is known to be an important rate-limiting enzyme in the production of monounsaturated fatty acids (MUFAs). However, the role of this enzyme in goose follicular development is poorly understood. To investigate the metabolic mechanism of SCD during goose follicular development, [...] Read more.
Stearoyl-CoA desaturase (SCD) is known to be an important rate-limiting enzyme in the production of monounsaturated fatty acids (MUFAs). However, the role of this enzyme in goose follicular development is poorly understood. To investigate the metabolic mechanism of SCD during goose follicular development, we observed its expression patterns in vivo and in vitro using quantitative reverse-transcription (qRT)-PCR. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine a cellular model of SCD function in granulosa cells (GCs) via SCD overexpression and knockdown. qRT-PCR analysis showed that SCD was abundantly expressed in the GC layer, and was upregulated in preovulatory follicles. Peak expression was found in F1 and prehierarchal follicles with diameters of 4–6 mm and 8–10 mm, respectively. We further found that mRNA expression and corresponding enzyme activity occur in a time-dependent oscillation pattern in vitro, beginning on the first day of GC culture. By LC-MS/MS, we identified numerous changes in metabolite activation and developed an overview of multiple metabolic pathways, 10 of which were associated with lipid metabolism and enriched in both the overexpressed and knockdown groups. Finally, we confirmed cholesterol and pantothenol or pantothenate as potential metabolite biomarkers to study SCD-related lipid metabolism in goose GCs. Full article
(This article belongs to the Special Issue Poultry Genetics, Breeding and Biotechnology)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessFeature PaperReview
Precise Genome Editing in Poultry and Its Application to Industries
Genes 2020, 11(10), 1182; https://doi.org/10.3390/genes11101182 - 12 Oct 2020
Abstract
Poultry such as chickens are valuable model animals not only in the food industry, but also in developmental biology and biomedicine. Recently, precise genome-editing technologies mediated by the CRISPR/Cas9 system have developed rapidly, enabling the production of genome-edited poultry models with novel traits [...] Read more.
Poultry such as chickens are valuable model animals not only in the food industry, but also in developmental biology and biomedicine. Recently, precise genome-editing technologies mediated by the CRISPR/Cas9 system have developed rapidly, enabling the production of genome-edited poultry models with novel traits that are applicable to basic sciences, agriculture, and biomedical industry. In particular, these techniques have been combined with cultured primordial germ cells (PGCs) and viral vector systems to generate a valuable genome-edited avian model for a variety of purposes. Here, we summarize recent progress in CRISPR/Cas9-based genome-editing technology and its applications to avian species. In addition, we describe further applications of genome-edited poultry in various industries. Full article
(This article belongs to the Special Issue Poultry Genetics, Breeding and Biotechnology)
Show Figures

Figure 1

Back to TopTop