Advances in Molecular Microbiology and Parasitology

A special issue of Genes (ISSN 2073-4425). This special issue belongs to the section "Microbial Genetics and Genomics".

Deadline for manuscript submissions: closed (25 October 2024) | Viewed by 4623

Special Issue Editor


E-Mail Website
Guest Editor
Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Universidad Autonoma de Madrid, 28049 Madrid, Spain
Interests: Leishmania; Trypanosoma; heat shock proteins; RNA binding proteins; regulation of gene expression; genomics; transcriptomics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The Molecular Biology central dogma was built on the empirical observation that pathogenic properties may be transmitted from dead to live microorganisms. This paved the road to a new scientific field in which microorganisms become tools for advancing our knowledge of the molecular mechanisms underlying all forms of life.

Microbiology encompasses several interlinked sub-disciplines including virology, bacteriology, protistology, mycology, and parasitology. This Special Issue aims to collect the outstanding advances in the molecular aspects of microorganisms. There is no restriction regarding whether the organism is or is not a pathogen, but the published studies should contribute advances in our knowledge regarding the molecular aspects of microorganisms.

High-throughput omics techniques (genomics, transcriptomics, proteomics, metabolomics, epigenomics, and so on) are providing a huge amount of data. In this regard, this Special Issue also welcomes data articles in which datasets are reported with the sole condition that data have to be deposited in dedicated repositories and that the samples and methods are described in a detailed manner.

Thus, this Special Issue plans to provide an overview of the most recent advances in the field of Microbiology and Parasitology. These topics include but are not limited to microbial genomics, environmental microbiology, host–microbe interactions, microbial pathogens, omics-based datasets, molecular taxonomy, and any other topics within the general scope of molecular microbiology.

Dr. Jose María Requena
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Genes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • virus
  • bacteria
  • protists
  • parasites
  • genomics
  • transcriptomics
  • proteomics
  • genetics
  • drug resistance
  • molecular evolution

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 4451 KiB  
Article
Changes in the Transcriptome and Long Non-Coding RNAs but Not the Methylome Occur in Human Cells Exposed to Borrelia burgdorferi
by Anne Berthold and Vett K. Lloyd
Genes 2024, 15(8), 1010; https://doi.org/10.3390/genes15081010 - 1 Aug 2024
Viewed by 1694
Abstract
Lyme disease, caused by infection with members of the Lyme borreliosis group of Borrelia spirochete bacteria, is increasing in frequency and distribution worldwide. Epigenetic interactions between the mammalian host, tick, and bacterial pathogen are poorly understood. In this study, high-throughput next-generation sequencing (NGS) [...] Read more.
Lyme disease, caused by infection with members of the Lyme borreliosis group of Borrelia spirochete bacteria, is increasing in frequency and distribution worldwide. Epigenetic interactions between the mammalian host, tick, and bacterial pathogen are poorly understood. In this study, high-throughput next-generation sequencing (NGS) allowed for the in vitro study of the transcriptome, non-coding RNAs, and methylome in human host cells in response to Borrelia burgdorferi infection. We tested the effect of the Borrelia burgdorferi strain B31 on a human primary cell line (HUVEC) and an immortalized cell line (HEK-293) for 72 h, a long-duration time that might allow for epigenetic responses in the exposed human host cells. Differential gene expression was detected in both cell models in response to B. burgdorferi. More differentially expressed genes were found in HUVECs compared to HEK-293 cells. Borrelia burgdorferi exposure significantly induced genes in the interferon, in addition to cytokine and other immune response signaling in HUVECs. In HEK-293 cells, pre-NOTCH processing in Golgi was significantly downregulated in Borrelia-exposed cells. Other significantly altered gene expressions were found in genes involved in the extracellular matrix. No significant global methylation changes were detected in HUVECs or HEK-293 cells exposed to B. burgdorferi; however, two long non-coding RNAs and a pseudogene were deregulated in response to B. burgdorferi in HUVECs, suggesting that other epigenetic mechanisms may be initiated by infection. Full article
(This article belongs to the Special Issue Advances in Molecular Microbiology and Parasitology)
Show Figures

Figure 1

13 pages, 2998 KiB  
Article
Identification and Spatiotemporal Expression of a Putative New GABA Receptor Subunit in the Human Body Louse Pediculus humanus humanus
by Omar Hashim, Berthine Toubaté, Claude L. Charvet, Aimun A. E. Ahmed, Cédric Neveu, Isabelle Dimier-Poisson, Françoise Debierre-Grockiego and Catherine Dupuy
Genes 2024, 15(7), 844; https://doi.org/10.3390/genes15070844 - 27 Jun 2024
Viewed by 1115
Abstract
The human louse (Pediculus humanus) is an obligatory blood feeding ectoparasite with two ecotypes: the human body louse (Pediculus humanus humanus), a competent vector of several bacterial pathogens, and the human head louse (Pediculus humanus capitis), responsible [...] Read more.
The human louse (Pediculus humanus) is an obligatory blood feeding ectoparasite with two ecotypes: the human body louse (Pediculus humanus humanus), a competent vector of several bacterial pathogens, and the human head louse (Pediculus humanus capitis), responsible for pediculosis and affecting millions of people around the globe. GABA (γ-aminobutyric acid) receptors, members of the cys-loop ligand gated ion channel superfamily, are among the main pharmacological targets for insecticides. In insects, there are four subunits of GABA receptors: resistant-to-dieldrin (RDL), glycin-like receptor of drosophila (GRD), ligand-gated chloride channel homologue3 (LCCH3), and 8916 are well described and form distinct phylogenetic clades revealing orthologous relationships. Our previous studies in the human body louse confirmed that subunits Phh-RDL, Phh-GRD, and Phh-LCCH3 are well clustered in their corresponding clades. In the present work, we cloned and characterized a putative new GABA receptor subunit in the human body louse that we named HoCas, for Homologous to Cys-loop α like subunit. Extending our analysis to arthropods, HoCas was found to be conserved and clustered in a new (fifth) phylogenetic clade. Interestingly, the gene encoding this subunit is ancestral and has been lost in some insect orders. Compared to the other studied GABA receptor subunits, HoCas exhibited a relatively higher expression level in all development stages and in different tissues of human body louse. These findings improved our understanding of the complex nature of GABA receptors in Pediculus humanus and more generally in arthropods. Full article
(This article belongs to the Special Issue Advances in Molecular Microbiology and Parasitology)
Show Figures

Graphical abstract

12 pages, 5264 KiB  
Article
Genetic Analysis of the Plasmid-Based Temperature-Lethal Mutant pa1792|lpxH(Ts) in Pseudomonas aeruginosa
by Haoyang Zhang, Zhili Yang and Jianhua Liu
Genes 2024, 15(6), 784; https://doi.org/10.3390/genes15060784 - 14 Jun 2024
Viewed by 1137
Abstract
Many enzymes in the Raetz pathway for lipid A biosynthesis in Escherichia coli are essential. A homologous protein Pa1792|LpxH in Pseudomonas aeruginosa is known to complement the loss of LpxH in E. coli. Genome-wide transposon-insertion sequencing analysis indicates that lpxH is essential [...] Read more.
Many enzymes in the Raetz pathway for lipid A biosynthesis in Escherichia coli are essential. A homologous protein Pa1792|LpxH in Pseudomonas aeruginosa is known to complement the loss of LpxH in E. coli. Genome-wide transposon-insertion sequencing analysis indicates that lpxH is essential in P. aeruginosa. However, genetic analysis of lpxH in P. aeruginosa has not been carried out, partly because the conditional alleles of essential genes are not readily constructed. In this study, we first constructed a plasmid-based temperature-sensitive mutant ΔlpxH/pTS-lpxH or lpxH(Ts) in P. aeruginosa PAO1. Spot-plating assay indicated that lpxH(Ts) was lethal at a restrictive temperature, confirming its essentiality for growth. Microscopic analysis revealed that lpxH(Ts) exhibited an oval-shaped morphology, suggesting that lpxH was required for rod-shape formation. SDS-PAGE and Western blotting analysis showed that lpxH(Ts) failed to synthesize lipid A, consistent with its function in lipid A biosynthesis. Strong expression of lpxH but not the non-homologous isoenzyme lpxI or lpxG impeded growth and caused cell lysis, implying that lpxH-specific cofactors were required for this toxic effect in P. aeruginosa. Together, our results demonstrate that lpxH is essential for lipid A biosynthesis, rod-shaped growth, and viability in P. aeruginosa. We propose that this plasmid-based conditional allele is a useful tool for the genetic study of essential genes in P. aeruginosa. Full article
(This article belongs to the Special Issue Advances in Molecular Microbiology and Parasitology)
Show Figures

Figure 1

Back to TopTop