How Close Are We to Achieving Durable and Efficacious Gene Therapy for Hemophilia A and B?
Abstract
1. Introduction
2. Gene Therapy
3. Hemophilia A
3.1. AAV Vector and Its Properties
3.2. Mechanism and Therapeutic Approach
3.3. Approved Therapies and Their Effectiveness
3.4. Roctavian (Valoctocogene Roxaparvovec)
3.5. Challenges and Limitations
3.6. Future Directions and Improvements
3.7. Hepatocellular Carcinoma (HCC)
3.8. Lentiviral Vectors
3.9. Other Gene Therapies
3.10. CRISPR-Based Approaches
3.11. Lipid Nanoparticles (LNPs)
4. Hemophilia B
4.1. Gene Therapy
4.2. Early Stages of Gene Therapy for Hemophilia B
4.3. Transition to Liver-Directed Gene Transfer
4.4. First Clinical Trials Using AAV2
4.5. Improvements: AAV8 and Self-Complementary AAV (scAAV) Vectors
4.6. Approved Therapies and Their Effectiveness
4.6.1. Hemgenix (Etranacogene Dezaparvovec)
4.6.2. Beqvez (Fidanacogene Elaparvovec)
4.7. Immunological Challenges
4.8. Strategies to Overcome Immune Responses
4.9. Lentiviral and Retroviral Vectors
4.10. Other Non-Viral Gene Therapy Strategies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salen, P.; Babiker, H.M.; Hemophilia, A. StatPearls [Internet]; [Updated 17 July 2023]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470265/ (accessed on 31 August 2025).
- Srivastava, A.; Abraham, A.; Aboobacker, F.; Singh, G.; Geevar, T.; Kulkarni, U.; Selvarajan, S.; Korula, A.; Dave, R.G.; Shankar, M.; et al. Lentiviral Gene Therapy with CD34+ Hematopoietic Cells for Hemophilia A. N. Engl. J. Med. 2025, 392, 450–457. [Google Scholar] [CrossRef]
- Shoukat, H.M.H.; Ghous, G.; Tarar, Z.I.; Shoukat, M.M.; Ajmal, N. Skewed Inactivation of X Chromosome: A Cause of Hemophilia Manifestation in Carrier Females. Cureus 2020, 12, e11216. [Google Scholar] [CrossRef]
- Mehta, P.; Reddivari, A.K.R. Hemophilia. In StatPearls [Internet]; [Updated 5 June 2023]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK551607/ (accessed on 31 August 2025).
- Blanchette, V.S.; O’Mahony, B.; McJames, L.; Mahlangu, J.N. Assessment of outcomes. Haemophilia 2014, 20 (Suppl. S4), 114–120. [Google Scholar] [CrossRef]
- Kizilocak, H.; Young, G. Diagnosis and treatment of hemophilia. Clin. Adv. Hematol. Oncol. 2019, 17, 344–351. [Google Scholar]
- Chowdary, P.; Carcao, M.; Kenet, G.; Pipe, S.W. Haemophilia. Lancet 2025, 405, 736–750. [Google Scholar] [CrossRef]
- Peyvandi, F.; Garagiola, I.; Young, G. The past and future of haemophilia: Diagnosis, treatments, and its complications. Lancet 2016, 388, 187–197. [Google Scholar] [CrossRef]
- Zimmerman, B.; Valentino, L.A. Hemophilia: In review. Pediatr. Rev. 2013, 34, 289–295. [Google Scholar] [CrossRef]
- Herzog, R.W.; Kaczmarek, R.; High, K.A. Gene therapy for hemophilia—From basic science to first approvals of “one-and-done” therapies. Mol. Ther. 2025, 33, 2015–2034. [Google Scholar] [CrossRef]
- Castaman, G.; Matino, D. Hemophilia A and B: Molecular and clinical similarities and differences. Haematologica 2019, 104, 1702–1709. [Google Scholar] [CrossRef]
- Rogers, G.L.; Herzog, R.W. Gene therapy for hemophilia. Front. Biosci. 2015, 20, 556–603. [Google Scholar] [CrossRef] [PubMed]
- Arruda, V.R.; Doshi, B.S. Gene Therapy for Hemophilia: Facts and Quandaries in the 21st Century. Mediterr. J. Hematol. Infect. Dis. 2020, 12, e2020069. [Google Scholar] [CrossRef]
- Samelson-Jones, B.J.; Small, J.C.; George, L.A. Roctavian gene therapy for Hemophilia A. Blood Adv. 2024, 8, 5179–5189. [Google Scholar] [CrossRef]
- Long, B.R.; Robinson, T.M.; Day, J.R.; Yu, H.; Lau, K.; Imtiaz, U.; Patton, K.S.; de Hart, G.; Henshaw, J.; Agarwal, S.; et al. Clinical immunogenicity outcomes from GENEr8-1, a phase 3 study of valoctocogene roxaparvovec, an AAV5-vectored gene therapy for Hemophilia A. Mol. Ther. 2024, 32, 2052–2063. [Google Scholar] [CrossRef]
- Gualtierotti, R.; Giachi, A.; Bitto, N.; La Mura, V.; Peyvandi, F. Gene therapy in hemophilia: The dawn of a new era. Res. Pract. Thromb. Haemost. 2024, 9, 102640. [Google Scholar] [CrossRef]
- Patel, S.R.; Lundgren, T.S.; Spencer, H.T.; Doering, C.B. The Immune Response to the fVIII Gene Therapy in Preclinical Models. Front. Immunol. 2020, 11, 494. [Google Scholar] [CrossRef]
- El-Akabawy, N.; Rodriguez, M.; Ramamurthy, R.; Rabah, A.; Trevisan, B.; Morsi, A.; George, S.; Shields, J.; Meares, D.; Farland, A.; et al. Defining the Optimal FVIII Transgene for Placental Cell-Based Gene Therapy to Treat Hemophilia A. Mol. Ther. Methods. Clin. Dev. 2020, 17, 465–477. [Google Scholar] [CrossRef]
- Pde Jong, Y.; Jacobson, I.M. Monitoring for liver cancer post-gene therapy-How much and how often? J. Viral Hepat. 2024, 31 (Suppl. S1), 35–40. [Google Scholar] [CrossRef]
- Leavitt, A.D.; Konkle, B.A.; Stine, K.C.; Visweshwar, N.; Harrington, T.J.; Giermasz, A.; Arkin, S.; Fang, A.; Plonski, F.; Yver, A.; et al. Giroctocogene fitelparvovec gene therapy for severe hemophilia A: 104-week analysis of the phase 1/2 Alta study. Blood 2024, 143, 796–806. [Google Scholar] [CrossRef]
- Chowdary, P.; Reiss, U.M.; Tuddenham, E.G.D.; Batty, P.; McIntosh, J.H.; Radulescu, V.C.; Chang, E.; Laffan, M.A.; Riddell, A.; Calvert, J.C.M.; et al. GO-8: Stable expression of factor VIII over 5 years following adeno-associated gene transfer in subjects with hemophilia A using a novel human factor VIII variant. Blood 2023, 142 (Suppl. S1), 3624. [Google Scholar] [CrossRef]
- Zhao, L.; Fang, S.; Ma, Y.; Ren, J.; Hao, L.; Wang, L.; Yang, J.; Lu, X.; Yang, L.; Wang, G. Targeted genome engineering based on CRISPR/Cas9 system to enhance FVIII expression in vitro. Gene 2024, 896, 148038. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Ma, X.; Gao, F.; Guo, Y. Off-target effects in CRISPR/Cas9 gene editing. Front. Bioeng. Biotechnol. 2023, 11, 1143157. [Google Scholar] [CrossRef]
- Uddin, F.; Rudin, C.M.; Sen, T. CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Front. Oncol. 2020, 10, 1387. [Google Scholar] [CrossRef]
- Patel, M.N.; Tiwari, S.; Wang, Y.; O’nEill, S.; Wu, J.; Omo-Lamai, S.; Espy, C.; Chase, L.S.; Majumder, A.; Hoffman, E.; et al. Safer non-viral DNA delivery using lipid nanoparticles loaded with endogenous anti-inflammatory lipids. Nat. Biotechnol. 2025. [Google Scholar] [CrossRef]
- Jung, H.N.; Lee, S.Y.; Lee, S.; Youn, H.; Im, H.J. Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of in vivo imaging. Theranostics 2022, 12, 7509–7531. [Google Scholar] [CrossRef]
- Lenting, P.J.; Fong, S. Gene therapy for hemophilia. Blood Adv. 2024, 8, 6081. [Google Scholar] [CrossRef]
- George, L.A. Hemophilia gene therapy comes of age. Hematology Am. Soc. Hematol. Educ. Program 2017, 2017, 587–594. [Google Scholar] [CrossRef]
- Dolan, G.; Benson, G.; Duffy, A.; Hermans, C.; Jiménez-Yuste, V.; Lambert, T.; Ljung, R.; Morfini, M.; Šalek, S.Z. Haemophilia B: Where are we now and what does the future hold? Blood Rev. 2018, 32, 52–60. [Google Scholar] [CrossRef]
- Scott, D.W.; Lozier, J.N. Gene therapy for haemophilia: Prospects and challenges to prevent or reverse inhibitor formation. Br. J. Haematol. 2012, 156, 295–302. [Google Scholar] [CrossRef]
- Herzog, R.W.; Vanden Driessche, T.; Ozelo, M.C. First hemophilia B gene therapy approved: More than two decades in the making. Mol. Ther. 2023, 31, 1–2. [Google Scholar] [CrossRef]
- Puzzo, F.; Kay, M.A. The deLIVERed promises of gene therapy: Past, present, and future of liver-directed gene therapy. Mol. Ther. 2025, 33, 1966–1987. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Frabutt, D.A.; Chrzanowski, M.; Li, N.; Miller, L.M.; Tian, J.; Mulcrone, P.L.; Lam, A.K.; Draper, B.E.; Jarrold, M.F.; et al. A novel class of self-complementary AAV vectors with multiple advantages based on cceAAV lacking mutant ITR. Mol. Ther. Methods Clin. Dev. 2024, 32, 101206. [Google Scholar] [CrossRef]
- CSL Behring LLC.; uniQure, Inc. HEMGENIX (Etranacogene Dezaparvovec-drlb) [Package Insert]; CSL Behring LLC.: King of Prussia, PA, USA; uniQure, Inc.: Amsterdam, the Netherlands, 2022. [Google Scholar]
- CSL Behring LLC. HEMGENIX (Etranacogene Dezaparvovec-drlb) | Efficacy; CSL Behring LLC.: King of Prussia, PA, USA, 2025; Available online: https://www.hemgenix.com/hcp/about-hemgenix/efficacy (accessed on 31 August 2025).
- CSL Behring LLC. CSL Behring’s Gene Therapy HEMGENIX (Etranacogene Dezaparvovec-drlb) Four-Year Post-Infusion Data Continue to Show Sustained Efficacy and Safety in Adults with Hemophilia B; CSL Behring LLC.: King of Prussia, PA, USA, 7 February 2025; Available online: https://newsroom.csl.com/2025-02-07-CSL-Behrings-Gene-Therapy-HEMGENIX-R-etranacogene-dezaparvovec-drlb-Four-Years-Post-Infusion-Data-Continue-to-Show-Sustained-Efficacy-and-Safety-in-Adults-with-Hemophilia-B (accessed on 31 August 2025).
- CSL Behring LLC. HOPE-B: Trial of AMT-061 (Etranacogene Dezaparvovec) in Severe or Moderately Severe Hemophilia B Patients; NCT03569891. Last Update Posted 21 March 2025; ClinicalTrials.gov. National Library of Medicine (US): Bethesda, MD, USA, 2025. Available online: https://clinicaltrials.gov/study/NCT03569891 (accessed on 31 August 2025).
- O’cOnnell, N.; van der Valk, P.; Le Quellec, S.; Gomez, E.; Monahan, P.E.; Crary, S.E.; Coppens, M.; Lemons, R.; Castaman, G.; Klamroth, R.; et al. Invasive procedures and surgery following etranacogene dezaparvovec gene therapy in people with hemophilia B. J. Thromb. Haemost. 2025, 23, 73–84. [Google Scholar] [CrossRef]
- Coppens, M.; Pipe, S.W.; Miesbach, W.; Astermark, J.; Recht, M.; van der Valk, P.; Ewenstein, B.; Pinachyan, K.; Galante, N.; Le Quellec, S.; et al. Etranacogene dezaparvovec gene therapy for haemophilia B (HOPE-B): 24-month post-hoc efficacy and safety data from a single-arm, multicentre, phase 3 trial. Lancet Haematol. 2024, 11, e265–e275. [Google Scholar] [CrossRef]
- Pipe, S.W.; Leebeek, F.W.; Recht, M.; Key, N.S.; Castaman, G.; Miesbach, W.; Lattimore, S.; Peerlinck, K.; Van der Valk, P.; Coppens, M.; et al. Gene Therapy with Etranacogene Dezaparvovec for Hemophilia B. N. Engl. J. Med. 2023, 388, 706–718. [Google Scholar] [CrossRef]
- Pfizer Inc. BEQVEZ (Fidanacogene Elaparvovec-dzkt) [Package Insert]; Pfizer Inc.: New York, NY, USA, 2024. [Google Scholar]
- Pfizer Inc. Pfizer Announces Positive Topline Results from Phase 3 Study of Fidanacogene Elaparvovec Gene Therapy (BENEGENE-2); 29 December 2022; Pfizer Inc.: New York, NY, USA, 2022; Available online: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-announces-positive-top-line-results-phase-3-study (accessed on 31 August 2025).
- Prime Therapeutics LLC. High-Cost Therapy Profile: May 2025; 15 May 2025; Prime Therapeutics LLC: St Paul, MN, USA, 2025; Available online: https://www.primetherapeutics.com/w/high-cost-therapy-profile-may-2025 (accessed on 31 August 2025).
- Cuker, A.; Kavakli, K.; Frenzel, L.; Wang, J.-D.; Astermark, J.; Cerqueira, M.H.; Iorio, A.; Katsarou-Fasouli, O.; Klamroth, R.; Shapiro, A.D.; et al. Gene Therapy with Fidanacogene Elaparvovec in Adults with Hemophilia B. N. Engl. J. Med. 2024, 391, 1108–1118. [Google Scholar] [CrossRef]
- National Bleeding Disorders Foundation. Pfizer Discontinues Beqvez Hemophilia B Gene Therapy; National Bleeding Disorders Foundation: Bethesda, MD, USA, 25 February 2025; Available online: https://www.bleeding.org/news/pfizer-discontinues-beqvez-hemophilia-b-gene-therapy (accessed on 31 August 2025).
- Pfizer Inc. BEQVEZ (fidanacogene elaparvovec-dzkt). In FDA Cellular & Gene Therapy Products; Content current as of 20 May 2024; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2024. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/beqvez (accessed on 31 August 2025).
- Pfizer Inc. BENEGENE-2: Phase 3 Study of Fidanacogene Elaparvovec in Adults with Moderately Severe to Severe Hemophilia B; Last Update Posted 28 March 2025; NCT03861273; ClinicalTrials.gov. National Library of Medicine (US): Bethesda, MD, USA, 2025. Available online: https://clinicaltrials.gov/study/NCT03861273 (accessed on 31 August 2025).
- Nisanov, A.M.; Rivera de Jesús, J.A.; Schaffer, D.V. Advances in AAV capsid engineering: Integrating rational design, directed evolution and machine learning. Mol. Ther. 2025, 33, 1937–1945. [Google Scholar] [CrossRef]
- Potter, R.A.; Peterson, E.L.; Griffin, D.; Olson, G.C.; Lewis, S.; Cochran, K.; Mendell, J.R.; Rodino-Klapac, L.R. Use of plasmapheresis to lower anti-AAV antibodies in nonhuman primates with pre-existing immunity to AAVrh74. Mol. Ther. Methods Clin. Dev. 2024, 32, 101195. [Google Scholar] [CrossRef]
- Mingozzi, F.; Anguela, X.M.; Pavani, G.; Chen, Y.; Davidson, R.J.; Hui, D.J.; Yazicioglu, M.; Elkouby, L.; Hinderer, C.J.; Faella, A.; et al. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci. Transl. Med. 2013, 5, 194ra92. [Google Scholar] [CrossRef] [PubMed]
- Chowdary, P.; Shapiro, S.; Makris, M.; Evans, G.; Boyce, S.; Talks, K.; Dolan, G.; Reiss, U.; Phillips, M.; Riddell, A.; et al. Phase 1–2 Trial of AAVS3 Gene Therapy in Patients with Hemophilia B. N. Engl. J. Med. 2022, 387, 237–247. [Google Scholar] [CrossRef]
- Sinn, P.L.; Sauter, S.L.; McCray, P.B., Jr. Gene therapy progress and prospects: Development of improved lentiviral and retroviral vectors--design, biosafety, and production. Gene Ther. 2005, 12, 1089–1098. [Google Scholar] [CrossRef]
- Park, F.; Kay, M.A. Modified HIV-1 based lentiviral vectors have an effect on viral transduction efficiency and gene expression in vitro and in vivo. Mol. Ther. 2001, 4, 164–173. [Google Scholar] [CrossRef]
- Chang, A.H.; Stephan, M.T.; Sadelain, M. Stem cell-derived erythroid cells mediate long-term systemic protein delivery. Nat. Biotechnol. 2006, 24, 1017–1021. [Google Scholar] [CrossRef]
- Annoni, A.; Brown, B.D.; Cantore, A.; Sergi, L.S.; Naldini, L.; Roncarolo, M.G. In vivo delivery of a microRNA-regulated transgene induces antigen-specific regulatory T cells and promotes immunologic tolerance. Blood 2009, 114, 5152–5161. [Google Scholar] [CrossRef]
- Agudo, J.; Ruzo, A.; Kitur, K.; Sachidanandam, R.; Blander, J.M.; Brown, B.D. A TLR and non-TLR mediated innate response to lentiviruses restricts hepatocyte entry and can be ameliorated by pharmacological blockade. Mol. Ther. 2012, 20, 2257–2267. [Google Scholar] [CrossRef]
- Wu, S.C.-Y.; Meir, Y.-J.J.; Coates, C.J.; Handler, A.M.; Pelczar, P.; Moisyadi, S.; Kaminski, J.M. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc. Natl. Acad. Sci. USA 2006, 103, 15008–15013. [Google Scholar] [CrossRef]
- Liu, Q.; Segal, D.J.; Ghiara, J.B.; Barbas, C.F., 3rd. Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc. Natl. Acad. Sci. USA 1997, 94, 5525–5530. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Merchán, E.C.; De Pablo-Moreno, J.A.; Liras, A. Gene Therapy in Hemophilia: Recent Advances. Int. J. Mol. Sci. 2021, 22, 7647. [Google Scholar] [CrossRef]
- Crudele, J.M.; Chamberlain, J.S. Cas9 immunity creates challenges for CRISPR gene editing therapies. Nat. Commun. 2018, 9, 3497. [Google Scholar] [CrossRef]
- Ewaisha, R.; Anderson, K.S. Immunogenicity of CRISPR therapeutics-Critical considerations for clinical translation. Front. Bioeng Biotechnol. 2023, 11, 1138596. [Google Scholar] [CrossRef]
- Charlesworth, C.T.; Hsu, I.; Wilkinson, A.C.; Nakauchi, H. Immunological barriers to haematopoietic stem cell gene therapy. Nat. Rev. Immunol. 2022, 22, 719–733. [Google Scholar] [CrossRef]
- Klamroth, R.; Hayes, G.; Andreeva, T.; Gregg, K.; Suzuki, T.; Mitha, I.H.; Hardesty, B.; Shima, M.; Pollock, T.; Slev, P.; et al. Global Seroprevalence of Pre-existing Immunity Against AAV5 and Other AAV Serotypes in People with Hemophilia A. Hum. Gene Ther. 2022, 33, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Pabinger, I.; Ayash-Rashkovsky, M.; Escobar, M.; Konkle, B.A.; Mingot-Castellano, M.E.; Mullins, E.S.; Negrier, C.; Pan, L.; Rajavel, K.; Yan, B.; et al. Multicenter assessment and longitudinal study of the prevalence of antibodies and related adaptive immune responses to AAV in adult males with hemophilia. Gene Ther. 2024, 31, 273–284. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Hemophilia A and B. National Library of Medicine (US). Available online: https://clinicaltrials.gov/ (accessed on 31 August 2025).
Category | Benefits | Risks/Limitations |
---|---|---|
Efficacy | - Endogenous production of clotting factor - Significant reduction in bleeding episodes | - Variable efficacy among patients - Possible loss of effect over time - Currently, AAV-based gene therapies are not recommended for pediatric patients due to a theoretical loss of efficacy in the developing liver |
Treatment mode | - Single intravenous administration | - Currently, no option for re-treatment with the same therapy (immune responses) |
Quality of life | - Elimination or reduction in the need for regular infusions | - Need for long-term monitoring |
Safety | - AAV vectors are relatively safe and typically do not integrate into the host genome | - Theoretical risk of cancer (DNA integration) - Possible immune reactions - The risk of genotoxicity/mutagenesis, particularly in relation to gene-editing approaches (e.g., CRISPR-based methods). |
Costs | - Potential long-term savings (no ongoing therapy required) | - Very high one-time cost |
Long-term effect | - Potential multi-year efficacy (even >8 years in some studies) | - Still lacking data from over 10 years of human follow-up |
Strategy | Expression Efficiency | Oncogenic Risk | Immunogenicity | Duration of Effect | Re-Treatment Possible |
---|---|---|---|---|---|
AAV (liver-directed transfer) | High | Low | Moderate (capsid + transgene) | Years | No |
Lentivirus (ex vivo) | High | Moderate–High | Low | Long-lasting | Yes |
IDLV | Moderate | Low | Low | Short | Yes |
Transposons (SB, piggyBac) | Moderate | Moderate | Low | Long-lasting | Yes |
CRISPR/Cas9 | High (if editing successful) | Low–High (method-dependent) | Low | Long-lasting | Not applicable |
Plasmid DNA (naked DNA) | Low | None | Low | Short-term | Yes |
LNP (lipid nanoparticles) | Low–Moderate | None | Low | Short | Yes |
Platform | Key Immunological Barriers | Strategies to Overcome |
---|---|---|
AAV (in vivo, liver-directed) | - Pre-existing neutralizing antibodies to capsid (20–40% prevalence) - CD8+ T cell responses causing hepatocyte clearance - Inability to re-dose | - Use of engineered capsids (Y-F mutations, novel serotypes) - Corticosteroids for liver enzyme elevations - Empty capsid decoys - Plasmapheresis or immunosuppression |
Lentiviral (ex vivo HSC/in vivo approaches) | - Innate immune sensing via TLR7, cGAS-STING - Potential adaptive immune responses to transgene - Insertional mutagenesis triggering immune activation | - Ex vivo modification of autologous HSCs promotes immune tolerance - Use of tissue-specific promoters (liver, myeloid) - Development of integrase-defective vectors (IDLVs) |
CRISPR/Gene Editing | - Innate immune recognition of Cas9 protein - Adaptive immunity against bacterial nucleases (Streptococcus pyogenes Cas9) - Inflammatory responses at off-target sites | - Development of humanized/smaller nucleases (SaCas9, Cas12a) - Transient delivery using mRNA or RNP complexes via LNPs - Careful off-target screening |
Hemophilia A | |||
---|---|---|---|
Trial Details | Trial Details | Trial Details | Trial Details |
Severe hemophilia A with pre-existing anti-AAV5 antibodies | NCT0352 | BioMarin Pharmaceutical | Phase 1/2 |
Severe HA | NCT02576795 | BioMarin Pharmaceutical | Phase 1/2 |
Valoctocogene roxaparvovec in hemophilia A | NCT03370913 | BioMarin Pharmaceutical | Phase 3 |
Valoctocogene roxaparvovec + corticosteroids | NCT04323098 | BioMarin Pharmaceutical | Phase 3 |
Evaluation of 4 × 1013 vg/kg valoctocogene roxaparvovec | NCT03391974 | BioMarin Pharmaceutical | Phase 1/2 |
Gene therapy for HA | NCT03001830 | University College London/MRC | Phase 1 |
AAV vector gene therapy: safety and dose escalation | NCT03370172 | Baxalta | Phase 1/2 |
PF-07055480 in moderate/severe HA | NCT04370054 | UniQure Biopharma BV | Phase 1/2 |
rAAV2/6-FVIII (SB-525) in severe HA | NCT03061201 | Pfizer | Phase 1/2 |
Lentiviral FVIII gene therapy | NCT03217032 | Shenzhen Geno-Immune Medical Institute | Phase 1 |
Hemophilia B | |||
AAV5-hFIXc in moderate/severe HB | NCT02396342 | UniQure Biopharma BV | Phase 1/2 |
Dose confirmation of AAV5-hFIXco-Padua | NCT03489291 | UniQure Biopharma BV | Phase 2b |
HOPE-B: AMT-061 in moderate/severe HB | NCT03569891 | UniQure Biopharma BV | Phase 3 |
Single-dose escalation of AAV8-FIX | NCT01687608 | Baxalta | Phase 1/2 |
SHP648 (AAV vector) in HB | NCT04394286 | Baxalta | Phase 1/2 |
Escalating-dose complementary AAV vector in HB | NCT00979238 | St. Jude Children’s Research Hospital + collaborators | Phase 1/2 |
Long-term safety and efficacy of SPK-9001 | NCT03307980 | Pfizer | Phase 1/2 |
PF-06838435 in moderate/severe HB (BENEGENE-2) | NCT03861273 | Pfizer | Phase 3 |
Lentiviral FIX gene therapy | NCT03961243 | Shenzhen Geno-Immune Medical Institute | Phase 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sosnowska-Sienkiewicz, P.; Januszkiewicz-Lewandowska, D. How Close Are We to Achieving Durable and Efficacious Gene Therapy for Hemophilia A and B? Genes 2025, 16, 1200. https://doi.org/10.3390/genes16101200
Sosnowska-Sienkiewicz P, Januszkiewicz-Lewandowska D. How Close Are We to Achieving Durable and Efficacious Gene Therapy for Hemophilia A and B? Genes. 2025; 16(10):1200. https://doi.org/10.3390/genes16101200
Chicago/Turabian StyleSosnowska-Sienkiewicz, Patrycja, and Danuta Januszkiewicz-Lewandowska. 2025. "How Close Are We to Achieving Durable and Efficacious Gene Therapy for Hemophilia A and B?" Genes 16, no. 10: 1200. https://doi.org/10.3390/genes16101200
APA StyleSosnowska-Sienkiewicz, P., & Januszkiewicz-Lewandowska, D. (2025). How Close Are We to Achieving Durable and Efficacious Gene Therapy for Hemophilia A and B? Genes, 16(10), 1200. https://doi.org/10.3390/genes16101200