Functionalized Gels for Environmental Applications (2nd Edition)

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Applications".

Deadline for manuscript submissions: closed (28 February 2025) | Viewed by 17133

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Technological Sciences and Innovation, Universitas Mercatorum, 00186 Rome, Italy
Interests: material science; hydrogels; water remediation; optical properties of materials; noble metal nanomaterials; 3D photo-printing; metal oxides
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

As Guest Editors of the Special Issue “Functionalized Gels for Environmental Applications (2nd edition)” in Gels, we would like to invite you to contribute to its success. Based on your valuable expertise in this research field, we are confident that you can submit a manuscript that meets the journal’s criteria for significance and scientific excellence.

This Special Issue is dedicated to the synthesis, characterization, and application of functionalized or doped matrices (e.g., hydrogels, aerogels, or sol–gels) for environmental purposes such as the sensing or removal of different toxic analytes. The chemical functional groups or the doping materials such as noble metal nanostructures, quantum dots, carbon nanotubes, etc., play several roles, donating further features to the host matrix, such as particular optical, mechanical, or electrical properties, and interacting with the surrounding environment. In addition, the employment of hosting matrices increases the handling and portability, and opens new horizons for in situ environmental applications.

Experimental and theoretical scientific research in environmental applications are warmly welcome.

Dr. Luca Burratti
Dr. Paolo Prosposito
Dr. Iole Venditti
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • functionalized matrices
  • doped matrices
  • gels
  • noble metal nanoparticles
  • noble metal nanoclusters
  • quantum dots
  • sensing
  • remediation of environment
  • heavy metal ions
  • pesticides
  • toxic gaseous compounds

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 4944 KiB  
Article
Synthesis and Characterization of a Superabsorbent Polymer Gel Using a Simultaneous Irradiation Technique on Corn Straw
by Xingkui Tao, Jun Guo, Aihua Wang, Qiang Wang, Yang Yang and Minwei Xu
Gels 2025, 11(4), 244; https://doi.org/10.3390/gels11040244 - 26 Mar 2025
Viewed by 249
Abstract
Utilizing gamma rays as an initiating agent, a simultaneous irradiation method was applied to graft acrylic acid and acrylamide onto corn straw that had been decrystallized using a NaOH/urea solution at a reduced temperature, aiming to fabricate superabsorbent polymer gel (SAPG) capable of [...] Read more.
Utilizing gamma rays as an initiating agent, a simultaneous irradiation method was applied to graft acrylic acid and acrylamide onto corn straw that had been decrystallized using a NaOH/urea solution at a reduced temperature, aiming to fabricate superabsorbent polymer gel (SAPG) capable of absorbing significantly more water. The structural attributes of the corn straw, the decrystallized corn straw, and the SAPG were analyzed via Fourier transform infrared spectroscopy (FTIR), X-ray crystal powder diffraction (XRD), thermogravimetric analysis (TG), and scanning electron microscopy (SEM). To enhance the SAPG’s performance, optimization of various parameters was carried out, such as irradiation dose, dose rate, the ratio of monomer to corn straw, the proportion of acrylic acid (AA) to acrylamide (Am), and the degree of neutralization. The resulting SAPG exhibited distilled water absorption of 1033 g/g and 90 g/g in 0.9 wt.% NaCl solution, with a radiation dose of 5 kGy, a dose rate of 1.5 kGy/h, AA-to-AM mass ratio of 1.2, monomer-to-CS mass ratio of 7, and 90% AA neutralization. Full article
(This article belongs to the Special Issue Functionalized Gels for Environmental Applications (2nd Edition))
Show Figures

Graphical abstract

22 pages, 3637 KiB  
Article
Preparation and Heavy Metal Adsorption Performance of 2-Aminopyridine-Modified Sodium Alginate/Polyacrylic Acid Hydrogel
by Tingxiang Wu, Amatjan Sawut and Rena Simayi
Gels 2025, 11(4), 224; https://doi.org/10.3390/gels11040224 - 21 Mar 2025
Viewed by 344
Abstract
This study utilized the Schiff base reaction as a chemical bonding method to successfully graft 2-aminopyridine onto oxidized sodium alginate, resulting in the formation of modified sodium alginate (OSM). Subsequently, the OSM/polyacrylic acid (OSM/PAA) hydrogel was synthesized via a thermally initiated free radical [...] Read more.
This study utilized the Schiff base reaction as a chemical bonding method to successfully graft 2-aminopyridine onto oxidized sodium alginate, resulting in the formation of modified sodium alginate (OSM). Subsequently, the OSM/polyacrylic acid (OSM/PAA) hydrogel was synthesized via a thermally initiated free radical polymerization process and evaluated as an adsorbent for the removal of heavy metal ions from wastewater. Comprehensive characterization of the prepared samples was performed using FT-IR, SEM, and TGA. The influence of temperature, pH, adsorbent dosage, contact time, and heavy metal ion concentration on the adsorption capacity of the OSM/PAA adsorbent in simulated wastewater was thoroughly investigated. Additionally, a detailed analysis of the adsorption thermodynamics, kinetics, and mechanisms was conducted. Experimental results indicated that at 25 °C, pH 5.0, and an adsorbent dosage of 0.4 g/L, the maximum adsorption capacities of the OSM/PAA hydrogel for Cu(II), Zn(II), and Ni(II) were 367.64 mg/g, 398.4 mg/g, and 409.83 mg/g, respectively. These findings suggest that the adsorption of heavy metal ions by OSM/PAA is a spontaneous, heterogeneous chemical process with significant potential for practical applications in wastewater treatment. Full article
(This article belongs to the Special Issue Functionalized Gels for Environmental Applications (2nd Edition))
Show Figures

Graphical abstract

19 pages, 4678 KiB  
Article
Ionic Crosslinking of Linear Polyethyleneimine Hydrogels with Tripolyphosphate
by Luis M. Araque, Antonia Infantes-Molina, Enrique Rodríguez-Castellón, Yamila Garro-Linck, Belén Franzoni, Claudio J. Pérez, Guillermo J. Copello and Juan M. Lázaro-Martínez
Gels 2024, 10(12), 790; https://doi.org/10.3390/gels10120790 - 3 Dec 2024
Cited by 1 | Viewed by 1408
Abstract
In this work, the mechanical properties of hydrogels based on linear polyethyleneimine (PEI) chemically crosslinked with ethyleneglycoldiglycidyl ether (EGDE) were improved by the ionic crosslinking with sodium tripolyphosphate (TPP). To this end, the quaternization of the nitrogen atoms present in the PEI structure [...] Read more.
In this work, the mechanical properties of hydrogels based on linear polyethyleneimine (PEI) chemically crosslinked with ethyleneglycoldiglycidyl ether (EGDE) were improved by the ionic crosslinking with sodium tripolyphosphate (TPP). To this end, the quaternization of the nitrogen atoms present in the PEI structure was conducted to render a network with a permanent positive charge to interact with the negative charges of TPP. The co-crosslinking process was studied by 1H high-resolution magic angle spinning (1H HRMAS) NMR and X-ray photoelectron spectroscopy (XPS) in combination with organic elemental analysis and inductively coupled plasma mass spectrometry (ICP-MS). In addition, the mobility and confinement of water molecules within the co-crosslinked hydrogels were studied by low-field 1H NMR. The addition of small amounts of TPP, 0.03 to 0.26 mmoles of TPP per gram of material, to the PEI-EGDE hydrogel resulted in an increase in the deformation resistance from 320 to 1080%, respectively. Moreover, the adsorption capacity of the hydrogels towards various emerging contaminants remained high after the TPP crosslinking, with maximum loading capacities (qmax) of 77, 512, and 55 mg g−1 at pH = 4 for penicillin V (antibiotic), methyl orange (azo-dye) and copper(II) ions (metal ion), respectively. A significant decrease in the adsorption capacity was observed at pH = 7 or 10, with qmax of 356 or 64 and 23 or 0.8 mg g−1 for methyl orange and penicillin V, respectively. Full article
(This article belongs to the Special Issue Functionalized Gels for Environmental Applications (2nd Edition))
Show Figures

Graphical abstract

12 pages, 2409 KiB  
Article
Polyion Hydrogels of Polymeric and Nanofibrous Carboxymethyl Cellulose and Chitosan: Mechanical Characteristics and Potential Use in Environmental Remediation
by Taisei Kawate, Yehao Wang, Kayee Chan, Nobuyuki Shibata, Yuya Doi, Yuichi Masubuchi and Anatoly Zinchenko
Gels 2024, 10(9), 604; https://doi.org/10.3390/gels10090604 - 23 Sep 2024
Cited by 1 | Viewed by 1537
Abstract
Recently, cellulose and other biomass nanofibers (NFs) have been increasingly utilized in the design of sustainable materials for environmental, biomedical, and other applications. However, the past literature lacks a comparison of the macromolecular and nanofibrous states of biopolymers in various materials, and the [...] Read more.
Recently, cellulose and other biomass nanofibers (NFs) have been increasingly utilized in the design of sustainable materials for environmental, biomedical, and other applications. However, the past literature lacks a comparison of the macromolecular and nanofibrous states of biopolymers in various materials, and the advantages and limitations of using nanofibers (NF) instead of conventional polymers are poorly understood. To address this question, hydrogels based on interpolyelectrolyte complexes (IPECs) between carboxymethyl cellulose nanofibers (CMCNFs) and chitosan (CS) were prepared by ele+ctrostatic cross-linking and compared with the hydrogels of carboxymethyl cellulose (CMC) and CS biopolymers. The presence of the rigid CMCNF altered the mechanism of the IPEC assembly and drastically affected the structure of IPEC hydrogels. The swelling ratios of CMCNF-CS hydrogels of ca. 40% were notably lower than the ca. 100–300% swelling of CMC-CS hydrogels. The rheological measurements revealed a higher storage modulus (G) of the CMCNF-CS hydrogel, reaching 13.3 kPa compared to only 3.5 kPa measured for the CMC-CS hydrogel. Further comparison of the adsorption characteristics of the CMCNF-CS and CMC-CS hydrogels toward Cu2+, Cd2+, and Hg2+ ions showed the slightly higher adsorption capacity of CMC-CS for Cu2+ but similar adsorption capacities for Cd2+ and Hg2+. The adsorption kinetics obeyed the pseudo-second-order adsorption model in both cases. Overall, while the replacement of CMC with CMCNF in hydrogel does not significantly affect the performance of such systems as adsorbents, CMCNF imparts IPEC hydrogel with higher stiffness and a frequency-independent loss (G) modulus and suppresses the hydrogel swelling, so can be beneficial in practical applications that require stable performance under various dynamic conditions. Full article
(This article belongs to the Special Issue Functionalized Gels for Environmental Applications (2nd Edition))
Show Figures

Figure 1

13 pages, 1974 KiB  
Article
Preparation and Testing of Polyethylenimine-Impregnated Silica Gel for CO2 Capture
by Veronika Kyselová, Jakub Havlín and Karel Ciahotný
Gels 2024, 10(6), 360; https://doi.org/10.3390/gels10060360 - 23 May 2024
Cited by 1 | Viewed by 1514
Abstract
This work studied the low-temperature sorption of carbon dioxide on impregnated silica gel. An impregnating agent was used polyethyleneimine. The content of the impregnating agent in the silica gel matrix was 33.4 wt.%. Material properties such as the Brunauer–Emmett–Teller (BET) surface area, pore [...] Read more.
This work studied the low-temperature sorption of carbon dioxide on impregnated silica gel. An impregnating agent was used polyethyleneimine. The content of the impregnating agent in the silica gel matrix was 33.4 wt.%. Material properties such as the Brunauer–Emmett–Teller (BET) surface area, pore distribution, total pore volume, and thermal stability of the impregnated material were determined for the sample. During the measurement of the adsorption–desorption cycles, the loss of the impregnating agent in the material matrix was also determined. Due to the decrease in the content of polyethyleneimine, the sorption capacity of the adsorbent for CO2 also decreased. It was found that after the 20th adsorption–desorption cycle, the content of the impregnating agent in the adsorbent dropped by 3.15 wt.%, and, as a result, the adsorption capacity for CO2 dropped to almost half. Full article
(This article belongs to the Special Issue Functionalized Gels for Environmental Applications (2nd Edition))
Show Figures

Figure 1

21 pages, 12175 KiB  
Article
Innovative Acrylic Resin-Hydrogel Double-Layer Coating: Achieving Dual-Anchoring, Enhanced Adhesion, and Superior Anti-Biofouling Properties for Marine Applications
by Boning Jiang, Yuhan Zhang, Ruiyang Wang, Ting Wang and En Zeng
Gels 2024, 10(5), 320; https://doi.org/10.3390/gels10050320 - 7 May 2024
Viewed by 1764
Abstract
Traditional anti-corrosion and anti-fouling coatings struggle against the harsh marine environment. Our study tackled this by introducing a novel dual-layer hydrogel (A-H DL) coating system. This system combined a Cu2O–SiO2–acrylic resin primer for anchoring and controlled copper ion release [...] Read more.
Traditional anti-corrosion and anti-fouling coatings struggle against the harsh marine environment. Our study tackled this by introducing a novel dual-layer hydrogel (A-H DL) coating system. This system combined a Cu2O–SiO2–acrylic resin primer for anchoring and controlled copper ion release with a dissipative double-network double-anchored hydrogel (DNDAH) boasting superior mechanical strength and anti-biofouling performance. An acrylamide monomer was copolymerized and cross-linked with a coupling agent to form the first irreversible network and first anchoring, providing the DNDAH coating with mechanical strength and structural stability. Alginate gel microspheres (AGMs) grafted with the same coupling agent formed the second reversible network and second anchoring, while coordinating with Cu2+ released from the primer to form a system buffering Cu2+ release, enabling long-term antibacterial protection and self-healing capabilities. FTIR, SEM, TEM, and elemental analyses confirmed the composition, morphology, and copper distribution within the A-H DL coating. A marine simulation experiment demonstrated exceptional stability and anti-fouling efficacy. This unique combination of features makes A-H DL a promising solution for diverse marine applications, from ship hulls to aquaculture equipment. Full article
(This article belongs to the Special Issue Functionalized Gels for Environmental Applications (2nd Edition))
Show Figures

Graphical abstract

16 pages, 5826 KiB  
Article
Heavy Metal Removal from Wastewater Using Poly(Gamma-Glutamic Acid)-Based Hydrogel
by Fujie Chen, Yanbin Zhao, Hang Zhao, Xuan Zhou and Xiuying Liu
Gels 2024, 10(4), 259; https://doi.org/10.3390/gels10040259 - 11 Apr 2024
Cited by 3 | Viewed by 2431
Abstract
The removal of toxic heavy metal ions from wastewater is of great significance in the protection of the environment and human health. Poly(gamma-glutamic acid) (PGA) is a non-toxic, biodegradable, and highly water-soluble polymer possessing carboxyl and imino functional groups. Herein, water-insoluble PGA-based hydrogels [...] Read more.
The removal of toxic heavy metal ions from wastewater is of great significance in the protection of the environment and human health. Poly(gamma-glutamic acid) (PGA) is a non-toxic, biodegradable, and highly water-soluble polymer possessing carboxyl and imino functional groups. Herein, water-insoluble PGA-based hydrogels were prepared, characterized, and investigated as heavy metal adsorbents. The prepared hydrogels were recyclable and exhibited good adsorption effects on heavy metal ions including Cu2+, Cr6+, and Zn2+. The effects of adsorption parameters including temperature, solution pH, initial concentration of metal ions, and contact time on the adsorption capacity of the hydrogel for Cu2+ were investigated. The adsorption was a spontaneous and exothermic process. The process followed the pseudo-first-order kinetic model and Langmuir isotherm model, implying a physical and monolayer adsorption. The adsorption mechanisms investigation exhibited that Cu2+ adsorbed on the hydrogel via electrostatic interactions with anionic carboxylate groups of PGA in addition to the coordination interactions with the –NH groups. Importantly, the PGA hydrogel exhibited good reusability and the adsorption capability for Cu2+ remained high after five consecutive cycles. The properties of PGA hydrogel make it a potential candidate material for heavy metal ion removal in wastewater treatment. Full article
(This article belongs to the Special Issue Functionalized Gels for Environmental Applications (2nd Edition))
Show Figures

Figure 1

15 pages, 10297 KiB  
Article
Gel-Embedded Biochar and Hydroxyapatite Composite for the Improvement of Saline-Alkali Soil and Plant Growth Promotion
by Xin Hu, Weiqin Ma, Lhamo Pasang, Jiansheng Li and Haoming Chen
Gels 2024, 10(4), 222; https://doi.org/10.3390/gels10040222 - 25 Mar 2024
Cited by 1 | Viewed by 1700
Abstract
Soil amendments play a crucial role in modern agriculture, as they effectively enhance the planting environment. This study innovatively proposes the use of gel as a crosslinking agent to embed biochar and hydroxyapatite (HAP), thereby preparing a novel soil amendment. Furthermore, this study [...] Read more.
Soil amendments play a crucial role in modern agriculture, as they effectively enhance the planting environment. This study innovatively proposes the use of gel as a crosslinking agent to embed biochar and hydroxyapatite (HAP), thereby preparing a novel soil amendment. Furthermore, this study investigates the soil improvement effects of this amendment as well as its influence on plant growth. This study employed a hydrothermal method to combine corn stalk (CB) or sludge (SB) biochar with HAP at different ratios (0–20%). Subsequently, sodium alginate gel (SA) was utilized to encapsulate the biochar and minerals, successfully forming a ternary composite gel material (corn stalk biochar/sludge biochar–sodium alginate gel-hydroxyapatite: CB/SB-SA-HAP). Finally, the practical effectiveness of this amendment was verified through potted soil experiments. The results indicate that the CB/SB-SA-HAP composite materials exhibited a micrometre-scale spherical structure with well-developed micropores and possess the functional groups of CB/SB, SA, and HAP, along with unique mineral properties. Through pot experiments, it was verified that the composite material effectively enhances multiple soil properties. After 21 days of cultivation, the soil pH values stabilized within the neutral range (pH = 7 ± 0.3) across all treatment groups. Except for the CB0 (CB:HAP = 1:0) and CB2.0 (CB:HAP = 1:2) treatments, the remaining treatments significantly reduced the soil EC values by 3.27% to 47.92%. All treatments significantly increased the contents of alkali-hydrolysable nitrogen (AHN) (34.89~57.91%), available phosphorus (AP) (35.93~56.55%), and available potassium (AK) (36.41~56.80%) in the soil. In comparison, although the SB treatment was more effective in regulating the pH and electrical conductivity (EC) of saline–alkali soil than the CB treatment, it was less effective in promoting plant growth in the short term. Through correlation analysis and redundancy analysis, a significant positive correlation was found between soil pH and ryegrass germination rate and plant height, particularly with the most pronounced impact on soil pH observed in the CB1.0 and SB0 (SB:HAP = 1:0) treatments. This study underscores the potential of CB/SB-SA-HAP composite materials in soil improvement and plant growth promotion, providing valuable insights for soil remediation, enhancement, and plant cultivation advancements in the agricultural sector. Full article
(This article belongs to the Special Issue Functionalized Gels for Environmental Applications (2nd Edition))
Show Figures

Figure 1

12 pages, 4882 KiB  
Article
Aerogel for Highly Efficient Photocatalytic Degradation
by Xue-Chun Yang and Jing-Tai Zhao
Gels 2024, 10(2), 100; https://doi.org/10.3390/gels10020100 - 26 Jan 2024
Cited by 2 | Viewed by 2299
Abstract
Photocatalysis is one of the effective ways to degrade pollutant antibiotics. Agar is used as the adsorption module to provide abundant pore structure. Carbon dots (CDs) are selected as light energy conversion components. Graphitic carbon nitride (g-C3N4) is used [...] Read more.
Photocatalysis is one of the effective ways to degrade pollutant antibiotics. Agar is used as the adsorption module to provide abundant pore structure. Carbon dots (CDs) are selected as light energy conversion components. Graphitic carbon nitride (g-C3N4) is used as the main material of the catalyst. Agar/CDs/g-C3N4-functionalized aerogel with a unique 3D pore structure is assembled. The Agar/CDs/g-C3N4 aerogel shows the highest photocurrent density, which is 3.7 times that of agar, 2.4 times that of 3-g-C3N4 and 1.6 times that of Agar/g-C3N4 aerogel. Compared with 3-g-C3N4 and Agar/g-C3N4 aerogel, which can completely remove AMX after 75 min, Agar/CDs/g-C3N4 aerogel can degrade amoxicillin (AMX) completely after 45 min of illumination. The reason is that Agar/CDs/g-C3N4 aerogel has a larger specific surface area, richer functional groups, a wider spectral range, higher photocurrent density and better carrier migration and separation efficiency. It is a good strategy with which to combine the effects of each component in the ternary system for the efficient photocatalysis of organic pollutants. Full article
(This article belongs to the Special Issue Functionalized Gels for Environmental Applications (2nd Edition))
Show Figures

Figure 1

11 pages, 3664 KiB  
Article
Copper Ion Removal Using a Waste-Plastic-Derived Hydrogel Adsorbent Prepared via Microwave-Assisted PET Aminolysis
by Kayee Chan, Masami Kawai, Mina Yamake and Anatoly Zinchenko
Gels 2023, 9(11), 874; https://doi.org/10.3390/gels9110874 - 3 Nov 2023
Cited by 9 | Viewed by 2025
Abstract
Despite the tremendous progress in the development of functional materials from plastic waste to promote its recycling, only a few examples of hydrogel materials from plastic waste were reported. In this study, microwave-assisted depolymerization of waste PET plastic using polyamine was performed to [...] Read more.
Despite the tremendous progress in the development of functional materials from plastic waste to promote its recycling, only a few examples of hydrogel materials from plastic waste were reported. In this study, microwave-assisted depolymerization of waste PET plastic using polyamine was performed to prepare short aminophthalamide oligomers followed by chemically cross-linking into a hydrogel material. Catalyst-free microwave-assisted aminolysis of PET was completed within 30–40 s, demonstrating high efficiency of the depolymerization reaction. Subsequent epoxy cross-linking of the oligomers yielded a hydrogel with a swelling degree of ca. 92.1 times in pure water. The application of the obtained hydrogel for the removal of copper ions (Cu2+) from water was demonstrated. Efficient complexation of NH2 groups of the hydrogel with Cu2+ resulted in high adsorption capacities of the hydrogel material toward Cu2+ removal, which were the highest at neutral pHs and reached ca. 213 mg/g. The proposed type of environmental material is beneficial owing to its waste-derived nature and functionality that can be applied for the high-efficiency removal of a broad scope of known environmental pollutants. Full article
(This article belongs to the Special Issue Functionalized Gels for Environmental Applications (2nd Edition))
Show Figures

Figure 1

Review

Jump to: Research

29 pages, 5370 KiB  
Review
Gels in Heterogeneous Photocatalysis: Past, Present, and Future
by Fitri Rizki Amalia, Lei Wang, Zuzanna Bielan, Agata Markowska-Szczupak, Zhishun Wei and Ewa Kowalska
Gels 2024, 10(12), 810; https://doi.org/10.3390/gels10120810 - 9 Dec 2024
Cited by 1 | Viewed by 983
Abstract
Photocatalysis has attracted more and more attention as a possible solution to environmental, water, and energy crises. Although some photocatalytic materials have already proven to perform well, there are still some problems that should be solved for the broad commercialization of photocatalysis-based technologies. [...] Read more.
Photocatalysis has attracted more and more attention as a possible solution to environmental, water, and energy crises. Although some photocatalytic materials have already proven to perform well, there are still some problems that should be solved for the broad commercialization of photocatalysis-based technologies. Among them, cheap and easy recycling, as well as stability issues, should be addressed. Accordingly, the application of gels, either as a photocatalytic material or as its support, might be a good solution. In this review, various propositions of gel-based photocatalysts have been presented and discussed. Moreover, an easy nanoarchitecture design of gel-based structures enables fundamental studies, e.g., on mechanism clarifications. It might be concluded that gels with their unique properties, i.e., low density, high specific surface area, great porosity, and low-cost preparation, are highly prospective for solar-energy-based reactions, water treatment, photodynamic cancer therapies, and fundamental research. Full article
(This article belongs to the Special Issue Functionalized Gels for Environmental Applications (2nd Edition))
Show Figures

Figure 1

Back to TopTop