Analytical and Computational Fluid Dynamics of Combustion and Fires

A special issue of Fluids (ISSN 2311-5521).

Deadline for manuscript submissions: closed (31 October 2024) | Viewed by 3180

Special Issue Editor


E-Mail Website
Guest Editor
Mechanical & Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA
Interests: flame acceleration; deflagration-to-detonation transition; turbulence and turbulent combustion; fire and mining safety; shale gas burning and utilization; combustion and hydrodynamic instabilities; supercritical and coal oxy-fuel combustion; acoustic coupling to reacting and non-reacting flows
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Often a useful tool, but occasionally a disaster, fire has accompanied humankind for millennia. Protecting from coldness, darkness, predators, and stomach bacteria, combustion brought primitive, tribal humans into modern industrial civilization, and it will likely remain the major provider of energy for industry, heating, and transportation in the foreseeable decades. Next-generation combustion technologies are expected to be environmentally friendly, safe, and energy-efficient, and the role of numerical methods is emerging in the design and development of such advances today.

The aim of this Special Issue is to collect recent analytical and computational advances in the fields of reacting fluids, including, but not limited to, premixed flame dynamics and morphology, turbulent burning, flame acceleration, and combustion instabilities.

Dr. V'yacheslav Akkerman
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fluids is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • computational fluid dynamics (CFD)
  • analytical and numerical combustion and fires
  • computational simulations
  • reacting fluids
  • combustion instabilities
  • flame morphology and dynamics
  • turbulent combustion
  • flame acceleration

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 5224 KiB  
Article
Large Eddy Simulation (LES) of Hydrogen Jet Flames and Finite Element Analysis of Thermal Barrier Coating
by Alon Davidy
Fluids 2024, 9(12), 287; https://doi.org/10.3390/fluids9120287 - 5 Dec 2024
Viewed by 396
Abstract
A jet flame occurs when the release of flammable gas or liquid ignites, resulting in a long, intense, and highly directional flame. This type of fire is commonly associated with industrial incidents involving pipelines, storage tanks, and other pressurized equipment. Jet fires are [...] Read more.
A jet flame occurs when the release of flammable gas or liquid ignites, resulting in a long, intense, and highly directional flame. This type of fire is commonly associated with industrial incidents involving pipelines, storage tanks, and other pressurized equipment. Jet fires are a significant concern in the oil and gas industry due to the handling and processing of large volumes of flammable hydrocarbons under pressure. The new computational method presented here includes several aspects of hydrogen jet flame accidents and their mitigation: the CFD simulation of a hydrogen jet flame using the HyRAM code and Fire Dynamics Simulator (FDS) software 5.0 using a large eddy simulation (LES) turbulence model; the calculation of the gaseous mixture’s thermo-physical properties using the GASEQ thermochemical code; the calculation of convective and radiative heat fluxes using empirical correlation; and a heat transfer simulation on the pipe thermal barrier coating (TBC) using COMSOL Multiphysics software 4.2a during the heating phase. This method developed for the ceramic blanket was validated successfully against the previous experimental results obtained by Gravit et al. It was shown that a jet fire’s maximum temperature obtained using FDS software was similar to that obtained using GASEQ thermochemical software 0.79 and HyRAM software. The TBC’s surface temperature reached 1945 °C. The stainless steel’s maximal temperature reached 165.5 °C. There was a slight decrease in UTS at this temperature. Full article
(This article belongs to the Special Issue Analytical and Computational Fluid Dynamics of Combustion and Fires)
Show Figures

Figure 1

26 pages, 15318 KiB  
Article
Design and Numerical Analysis of an Annular Combustion Chamber
by Luis Alfonso Moreno-Pacheco, Fernando Sánchez-López, Juan Gabriel Barbosa-Saldaña, José Martínez-Trinidad, Mario Alberto Carpinteyro-Pérez, Wilbert Wong-Ángel and Ricardo Andrés García-León
Fluids 2024, 9(7), 161; https://doi.org/10.3390/fluids9070161 - 16 Jul 2024
Viewed by 2262
Abstract
Designing a combustion chamber for gas turbines is considered both a science and an art. This study presents a comprehensive methodology for designing an annular combustion chamber tailored to the operating conditions of a CFM-56 engine, a widely used high bypass ratio turbofan [...] Read more.
Designing a combustion chamber for gas turbines is considered both a science and an art. This study presents a comprehensive methodology for designing an annular combustion chamber tailored to the operating conditions of a CFM-56 engine, a widely used high bypass ratio turbofan engine. The design process involved calculating the basic criteria and dimensions for the casing, liner, diffuser, and swirl, followed by an analysis of the cooling sections of the liner. Numerical simulations using NUMECA software and the HEXPRESS meshing tool were conducted to predict the combustion chamber’s behavior and performance, employing the κ-ε turbulence model and the Flamelet combustion model. Methane was used as the fuel, and simulations were performed for three fuel injection angles: axial, 45°, and 60°. Results demonstrate that the combustion chamber is properly dimensioned and achieves complete combustion for all configurations. The pressure ratio is 0.96, exceeding the minimum design criteria. Additionally, the emissions of unburned hydrocarbons are zero, while nitrogen oxides and carbon monoxide levels are below regulatory limits. These findings validate the proposed design methodology, ensuring efficient and environmentally compliant combustion chamber performance. Full article
(This article belongs to the Special Issue Analytical and Computational Fluid Dynamics of Combustion and Fires)
Show Figures

Figure 1

Back to TopTop