Next Issue
Volume 2, December
Previous Issue
Volume 2, June
 
 

Energy Storage Appl., Volume 2, Issue 3 (September 2025) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 1881 KB  
Communication
Techno-Economics of Using Second Life BEV Traction Batteries as BESS in Domestic RES Installations
by Jacek A. Biskupski
Energy Storage Appl. 2025, 2(3), 13; https://doi.org/10.3390/esa2030013 - 18 Sep 2025
Viewed by 520
Abstract
This article analyses the possibility of using Li-ion batteries removed from battery electric vehicles (BEVs) as short-term energy storage devices in a near-zero energy building (nZEB) in conjunction with a rooftop photovoltaic (PV) system. The technical and economic feasibility of this solution was [...] Read more.
This article analyses the possibility of using Li-ion batteries removed from battery electric vehicles (BEVs) as short-term energy storage devices in a near-zero energy building (nZEB) in conjunction with a rooftop photovoltaic (PV) system. The technical and economic feasibility of this solution was compared to that of a standard commercial LIB (Lithium-Ion battery) BESS Battery Energy Storage System). Two generations of the same BEV model battery were tested to analyse their suitability for powering a building. The necessary changes to the setup of such a battery for building power supply purposes were analysed, as well as its suitability. As a result, analyses of profitability over the predicted life span and NPV (net present value) of SLEVBs (second-life BEV batteries) for building power were carried out. The study also conducted preliminary research on the effectiveness of such projects and their pros and cons in terms of security. The author calculates the profitability of a ready-made PV BESS with a set of SLEVBs, estimating the payback periods for such investments relative to electricity prices in Poland. The article concludes on the potential of SLEVBs to support self-consumption in nZEB buildings and its environmental impact on the European circular economy. Full article
Show Figures

Figure 1

20 pages, 1980 KB  
Article
Methodology for Thermal Analysis in Port Methane Storage
by José Miguel Mahía-Prados, Ignacio Arias-Fernández and Manuel Romero Gómez
Energy Storage Appl. 2025, 2(3), 12; https://doi.org/10.3390/esa2030012 - 20 Aug 2025
Viewed by 543
Abstract
Methane, transported as Liquefied Natural Gas (LNG) at −163 °C, is becoming the leading fuel in the decarbonization of the maritime sector within the low-carbon fuels. More than 30 years of knowledge has allowed the development of an extensive offshore supply network that [...] Read more.
Methane, transported as Liquefied Natural Gas (LNG) at −163 °C, is becoming the leading fuel in the decarbonization of the maritime sector within the low-carbon fuels. More than 30 years of knowledge has allowed the development of an extensive offshore supply network that includes regasification plants to store and supply it to the grid, both onshore and offshore. This article first reviews the current state of the sector. Then, the operation of a typical onshore regasification plant and the heat transfer through the storage tanks that causes the generation of boil-off gas (BOG) are analyzed by means of two different methodologies. Finally, and based on the results obtained, the different improvements that can be implemented in this type of installation to improve its energy efficiency and insulation are established, such as, for example, an improvement of more than 4 W/m2 by reinforcing the thickness of the materials of the tank dome. Full article
Show Figures

Figure 1

22 pages, 5322 KB  
Article
Comparative Modeling of Vanadium Redox Flow Batteries Using Multiple Linear Regression and Random Forest Algorithms
by Ammar Ali, Sohel Anwar and Afshin Izadian
Energy Storage Appl. 2025, 2(3), 11; https://doi.org/10.3390/esa2030011 - 5 Aug 2025
Viewed by 757
Abstract
This paper presents a comparative study of data-driven modeling approaches for vanadium redox flow batteries (VRFBs), utilizing Multiple Linear Regression (MLR) and Random Forest (RF) algorithms. Experimental voltage–capacity datasets from a 1 kW/1 kWh VRFB system were digitized, processed, and used for model [...] Read more.
This paper presents a comparative study of data-driven modeling approaches for vanadium redox flow batteries (VRFBs), utilizing Multiple Linear Regression (MLR) and Random Forest (RF) algorithms. Experimental voltage–capacity datasets from a 1 kW/1 kWh VRFB system were digitized, processed, and used for model training, validation, and testing. The MLR model, built using eight optimized features, achieved a mean error (ME) of 0.0204 V, a residual sum of squares (RSS) of 8.87, and a root mean squared error (RMSE) of 0.1796 V on the test data, demonstrating high predictive performance in stationary operating regions. However, it exhibited limited accuracy during dynamic transitions. Optimized through out-of-bag (OOB) error minimization, the Random Forest model achieved a training RMSE of 0.093 V and a test RMSE of 0.110 V, significantly outperforming MLR in capturing dynamic behavior while maintaining comparable performance in steady-state regions. The accuracy remained high even at lower current densities. Feature importance analysis and partial dependence plots (PDPs) confirmed the dominance of current-related features and SOC dynamics in influencing VRFB terminal voltage. Overall, the Random Forest model offers superior accuracy and robustness, making it highly suitable for real-time VRFB system monitoring, control, and digital twin integration. This study highlights the potential of combining machine learning algorithms with electrochemical domain knowledge to enhance battery system modeling for future energy storage applications. Full article
Show Figures

Figure 1

13 pages, 920 KB  
Project Report
Analysis of Primary and Secondary Frequency Control Challenges in African Transmission System
by Julius Abayateye and Daniel J. Zimmerle
Energy Storage Appl. 2025, 2(3), 10; https://doi.org/10.3390/esa2030010 - 8 Jul 2025
Cited by 1 | Viewed by 783
Abstract
This study analyzed the frequency control challenges within the West Africa Power Pool Interconnected Transmission System (WAPPITS) as it plans to incorporate variable renewable energy (VRE) resources, such as wind and solar energy. Concerns center on the ability of WAPPITS primary frequency control [...] Read more.
This study analyzed the frequency control challenges within the West Africa Power Pool Interconnected Transmission System (WAPPITS) as it plans to incorporate variable renewable energy (VRE) resources, such as wind and solar energy. Concerns center on the ability of WAPPITS primary frequency control reserves to adapt to high VRE penetration given the synchronization and frequency control problems experienced by the three separate synchronous blocks of WAPPITS. Optimizing solutions requires a better understanding of WAPPITS’ current frequency control approach. This study used questionnaires to understand operators’ practical experience with frequency control and compared these observations to field tests at power plants and frequency response metrics during system events. Eight (8) of ten (10) Transmission System Operators (TSOs) indicated that primary frequency control service was implemented in the TSO, but nine (9) of ten TSOs indicated that the reserves provided were inadequate to meet system needs. Five (5) of ten (10) respondents answered “yes” to the provision of secondary frequency control service, while only one (1) indicated that secondary reserves were adequate. Three (3) TSOs indicated they have AGC (Automatic Generation Control) installed in the control room, but none have implemented it for secondary frequency control. The results indicate a significant deficiency in primary control reserves, resulting in a reliance on under-frequency load shedding for primary frequency control. Additionally, the absence of an AGC system for secondary frequency regulation required manual intervention to restore frequency after events. To ensure the effectiveness of battery energy storage systems (BESSs) and the reliable operation of the WAPPITS with a higher penetration of inverter-based VRE, this paper recommends (a) implementing and enforcing basic primary frequency control structures through regional regulation and (b) establishing an ancillary services market to mobilize secondary frequency control resources. Full article
Show Figures

Figure 1

13 pages, 656 KB  
Article
AI Predictive Simulation for Low-Cost Hydrogen Production
by Allan John Butler and Akhtar Kalam
Energy Storage Appl. 2025, 2(3), 9; https://doi.org/10.3390/esa2030009 - 1 Jul 2025
Viewed by 1278
Abstract
Green hydrogen, produced through renewable-powered electrolysis, has the potential to revolutionize energy systems; however, its widespread adoption hinges on achieving competitive production costs. A critical challenge lies in optimising the hydrogen production process to address solar and wind energy’s high variability and intermittency. [...] Read more.
Green hydrogen, produced through renewable-powered electrolysis, has the potential to revolutionize energy systems; however, its widespread adoption hinges on achieving competitive production costs. A critical challenge lies in optimising the hydrogen production process to address solar and wind energy’s high variability and intermittency. This paper explores the role of artificial intelligence (AI) in reducing and streamlining hydrogen production costs by enabling advanced process optimisation, focusing on electricity cost management and system-wide efficiency improvements. Full article
Show Figures

Figure 1

32 pages, 371 KB  
Review
Advancing Energy Storage Technologies and Governance in the Asia-Pacific Region: A Review of International Frameworks, Research Insights, and Regional Case Studies
by Chung-Han Yang and Jack Huang
Energy Storage Appl. 2025, 2(3), 8; https://doi.org/10.3390/esa2030008 - 23 Jun 2025
Viewed by 1918
Abstract
This review explores the development of energy storage technologies and governance frameworks in the Asia-Pacific region, where rapid economic growth and urbanisation drive the demand for sustainable energy solutions. Energy storage systems (ESS) are integral to balancing renewable energy fluctuations, improving grid resilience, [...] Read more.
This review explores the development of energy storage technologies and governance frameworks in the Asia-Pacific region, where rapid economic growth and urbanisation drive the demand for sustainable energy solutions. Energy storage systems (ESS) are integral to balancing renewable energy fluctuations, improving grid resilience, and reducing greenhouse gas emissions. This paper examines the role of international organisations, including the United Nations, International Energy Agency (IEA), and International Renewable Energy Agency (IRENA), in promoting energy storage advancements through strategic initiatives, policy frameworks, and funding mechanisms. Regionally, the Asia-Pacific Economic Cooperation (APEC), the Association of Southeast Asian Nations (ASEAN), and the Asian Development Bank (ADB) have launched programs fostering collaboration, technical support, and knowledge sharing. Detailed case studies of Japan, Thailand, and China highlight the diverse policy approaches, technological innovations, and international collaborations shaping energy storage advancements. While Japan emphasises cutting-edge innovation, Thailand focuses on regional integration, and China leads in large-scale deployment and manufacturing. This analysis identifies key lessons from these frameworks and case studies, providing insights into governance strategies, policy implications, and the challenges of scaling energy storage technologies. It offers a roadmap for advancing regional and global efforts toward achieving low-carbon, resilient energy systems aligned with sustainability and climate goals. Full article
Previous Issue
Next Issue
Back to TopTop