entropy-logo

Journal Browser

Journal Browser

Gibbs Paradox and Its Resolutions

A special issue of Entropy (ISSN 1099-4300).

Deadline for manuscript submissions: closed (30 November 2009) | Viewed by 123301

Special Issue Editor


E-Mail Website
Guest Editor
1. Institute for Theoretical Physics, University of Amsterdam, Amsterdam, The Netherlands
2. International Institute of Physics, Natal, Brazil
Interests: foundations of general relativity; sub-quantum mechanics; quantum information theory; quantum measurement process; quantum thermodynamics and the Gibbs paradox; Biophysics: molecular motors; neural networks; DNA adsorption; black hole thermodynamics; black hole information paradox; Gravitation: globular star clusters; thermodynamic description of the glassy state; spin glasses and model glasses; transport of light in strongly scattering media; interfaces and directed polymers; lifshitz and Griffiths singularities; noise in physical systems; random walks on random lattices; disordered chains; foundations of special relativity

Special Issue Information

Literature

A collection of journal papers on Gibbs Paradox is available at http://www.mdpi.org/lin/entropy/gibbs-paradox.htm.

Keywords

  • entropy of mixing
  • distinguishability and indistinguishability
  • similarity
  • symmetry number
  • phase separation
  • configurational entropy (also a related special issue "Configurational Entropy")

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:
198 KiB  
Article
In Defense of Gibbs and the Traditional Definition of the Entropy of Distinguishable Particles
by John F. Nagle
Entropy 2010, 12(8), 1936-1945; https://doi.org/10.3390/e12081936 - 24 Aug 2010
Cited by 10 | Viewed by 8257
Abstract
The traditional Gibbs’ calculation of the entropy of distinguishable classical particles that leads to Gibbs Paradox has been criticized recently. This criticism, if valid, would require a substantially different definition of entropy in general. However, the traditional definition of entropy works quite well [...] Read more.
The traditional Gibbs’ calculation of the entropy of distinguishable classical particles that leads to Gibbs Paradox has been criticized recently. This criticism, if valid, would require a substantially different definition of entropy in general. However, the traditional definition of entropy works quite well in situations where the distinguishability of classical particles is taken seriously while a suggested replacement definition fails. Full article
(This article belongs to the Special Issue Gibbs Paradox and Its Resolutions)
Show Figures

Figure 1

118 KiB  
Article
Gibbs’ Paradox and the Definition of Entropy
by Robert H. Swendsen
Entropy 2008, 10(1), 15-18; https://doi.org/10.3390/entropy-e10010015 - 20 Mar 2008
Cited by 39 | Viewed by 16881
Abstract
Gibbs’ Paradox is shown to arise from an incorrect traditional definition of the entropy that has unfortunately become entrenched in physics textbooks. Among its flaws, the traditional definition predicts a violation of the second law of thermodynamics when applied to colloids. By adopting [...] Read more.
Gibbs’ Paradox is shown to arise from an incorrect traditional definition of the entropy that has unfortunately become entrenched in physics textbooks. Among its flaws, the traditional definition predicts a violation of the second law of thermodynamics when applied to colloids. By adopting Boltzmann’s definition of the entropy, the violation of the second law is eliminated, the properties of colloids are correctly predicted, and Gibbs’ Paradox vanishes. Full article
(This article belongs to the Special Issue Gibbs Paradox and Its Resolutions)
8 KiB  
Editorial
Diversity and Entropy
by Shu-Kun Lin
Entropy 1999, 1(1), 1-3; https://doi.org/10.3390/e1010001 - 11 Feb 1999
Cited by 25 | Viewed by 10441
Abstract
Entropy has been launched as a scientific journal to provide an advanced forum for the community of entropy and information researchers. [...] Full article
(This article belongs to the Special Issue Gibbs Paradox and Its Resolutions)
41 KiB  
Article
Entropy Calculation of Reversible Mixing of Ideal Gases Shows Absence of Gibbs Paradox
by Vasili Tatarin and Oleg Borodiouk
Entropy 1999, 1(2), 25-36; https://doi.org/10.3390/e1020025 - 23 May 1999
Cited by 3 | Viewed by 12771
Abstract
We consider the work of reversible mixing of ideal gases using a real process. Now assumptions were made concerning infinite shifts, infinite number of cycles and infinite work to provide an accurate calculation of entropy resulting from reversible mixing of ideal gases. We [...] Read more.
We consider the work of reversible mixing of ideal gases using a real process. Now assumptions were made concerning infinite shifts, infinite number of cycles and infinite work to provide an accurate calculation of entropy resulting from reversible mixing of ideal gases. We derived an equation showing the dependence of this entropy on the difference in potential of mixed gases, which is evidence for the absence of Gibbs' paradox. Full article
(This article belongs to the Special Issue Gibbs Paradox and Its Resolutions)
130 KiB  
Article
Some Observations on the Concepts of Information-Theoretic Entropy and Randomness
by Jonathan D.H. Smith
Entropy 2001, 3(1), 1-11; https://doi.org/10.3390/e3010001 - 1 Feb 2001
Cited by 20 | Viewed by 10107
Abstract
Certain aspects of the history, derivation, and physical application of the information-theoretic entropy concept are discussed. Pre-dating Shannon, the concept is traced back to Pauli. A derivation from first principles is given, without use of approximations. The concept depends on the underlying degree [...] Read more.
Certain aspects of the history, derivation, and physical application of the information-theoretic entropy concept are discussed. Pre-dating Shannon, the concept is traced back to Pauli. A derivation from first principles is given, without use of approximations. The concept depends on the underlying degree of randomness. In physical applications, this translates to dependence on the experimental apparatus available. An example illustrates how this dependence affects Prigogine's proposal for the use of the Second Law of Thermodynamics as a selection principle for the breaking of time symmetry. The dependence also serves to yield a resolution of the so-called ``Gibbs Paradox.'' Extension of the concept from the discrete to the continuous case is discussed. The usual extension is shown to be dimensionally incorrect. Correction introduces a reference density, leading to the concept of Kullback entropy. Practical relativistic considerations suggest a possible proper reference density. Full article
(This article belongs to the Special Issue Gibbs Paradox and Its Resolutions)
210 KiB  
Discussion
On the So-Called Gibbs Paradox, and on the Real Paradox
by Arieh Ben-Naim
Entropy 2007, 9(3), 132-136; https://doi.org/10.3390/e9030133 - 21 Sep 2007
Cited by 20 | Viewed by 15621
Abstract
Two versions of the so-called Gibbs paradox are discussed. Both of these areshown to be non-paradoxes. It is also shown that there is a different real paradox that emergesfrom Gibbs writings. Full article
(This article belongs to the Special Issue Gibbs Paradox and Its Resolutions)
Show Figures

Figure 1

90 KiB  
Commentary
Gibbs Paradox and the Concepts of Information, Symmetry, Similarity and Their Relationship
by Shu-Kun Lin
Entropy 2008, 10(1), 1-5; https://doi.org/10.3390/entropy-e10010001 - 17 Mar 2008
Cited by 18 | Viewed by 25056
Abstract
We are publishing volume 10 of Entropy. When I was a chemistry student I was facinated by thermodynamic problems, particularly the Gibbs paradox. It has now been more than 10 years since I actively published on this topic [1-4]. During this decade, [...] Read more.
We are publishing volume 10 of Entropy. When I was a chemistry student I was facinated by thermodynamic problems, particularly the Gibbs paradox. It has now been more than 10 years since I actively published on this topic [1-4]. During this decade, the globalized Information Society has been developing very quickly based on the Internet and the term information is widely used, but what is information? What is its relationship with entropy and other concepts like symmetry, distinguishability and stability? What is the situation of entropy research in general? As the Editor-in-Chief of Entropy, I feel it is time to offer some comments, present my own opinions in this matter and point out a major flaw in related studies. [...] Full article
(This article belongs to the Special Issue Gibbs Paradox and Its Resolutions)
Show Figures

Figure 1

120 KiB  
Review
Thermodynamics of the System of Distinguishable Particles
by Chi-Ho Cheng
Entropy 2009, 11(3), 326-333; https://doi.org/10.3390/e11030326 - 29 Jun 2009
Cited by 15 | Viewed by 13420
Abstract
The issue of the thermodynamics of a system of distinguishable particles is discussed in this paper. In constructing the statistical mechanics of distinguishable particles from the definition of Boltzmann entropy, it is found that the entropy is not extensive. The inextensivity leads to [...] Read more.
The issue of the thermodynamics of a system of distinguishable particles is discussed in this paper. In constructing the statistical mechanics of distinguishable particles from the definition of Boltzmann entropy, it is found that the entropy is not extensive. The inextensivity leads to the so-called Gibbs paradox in which the mixing entropy of two identical classical gases increases. Lots of literature from different points of view were created to resolve the paradox. In this paper, starting from the Boltzmann entropy, we present the thermodynamics of the system of distinguishable particles. A straightforward way to get the corrected Boltzmann counting is shown. The corrected Boltzmann counting factor can be justified in classical statistical mechanics. Full article
(This article belongs to the Special Issue Gibbs Paradox and Its Resolutions)
48 KiB  
Letter
Gibbs’ Paradox in the Light of Newton’s Notion of State
by Peter Enders
Entropy 2009, 11(3), 454-456; https://doi.org/10.3390/e11030454 - 7 Sep 2009
Cited by 6 | Viewed by 8927
Abstract
In this letter, it is argued that the correct counting of microstates is obtained from the very beginning when using Newtonian rather than Laplacian state functions, because the former are intrinsically permutation invariant. Full article
(This article belongs to the Special Issue Gibbs Paradox and Its Resolutions)
Back to TopTop