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Abstract: We consider the work of reversible mixing of ideal gases using a real process.

New assumptions were made concerning infinite shifts, infinite number of cycles and

infinite work to provide an accurate calculation of entropy resulting from reversible mixing

of ideal gases.   We derived an equation showing the dependence of this entropy on the

difference in potential of mixed gases, which is evidence for the absence of Gibbs' paradox.

Keywords: Gibbs paradox; entropy of mixing; distinguishability, half-penetrable

membrane.

Introduction

The problem of ideal gases mixing entropy was solved by J. W. Gibbs in 1876 [1]. The result of

this solution was known as Gibbs' paradox and has existed for more than 120 years due to an annoying

misunderstanding caused by this solution. Up to now, hundreds of attempts have been made to explain

the independence of  mixing entropy from the difference in physical properties between the gases to be
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mixed. We shall not consider all of these attempts, but shall use the main results of these attempts in

order to derive our new equation.

The existence of Gibbs' paradox is strange in classic thermodynamics, because the named paradox

does not arise from experimental data, but from equations that contradict the Gibbs’ equation.

In our article, the work of the reversible mixing of ideal gases is calculated. This result allows us to

show both the absence of Gibbs' paradox and some thermodynamic limitations that imply the

impossible existence of pure substances, absolute vacuum, and half-penetrable membranes.

The Description of the Problem

We consider the work of mixing ideal gases satisfying the Equations found by J. W. Gibbs [1] in

the following manner:

∑ ⋅
⋅⋅

=
i i

i

Vm

TRM
P , (1)

∑ 







⋅+⋅⋅+⋅=

i ii

i
iiii m

V

m

M
TCMHMS lnln , (2)

where P  - pressure of the gas mixture, iM  - mass of i  component of the gas mixture, R  - universal

gas constant, T  - absolute temperature, im  - molal mass of i  component of the gas mixture,V  -

volume of gas mixture, S  - entropy of gas mixture, iH , iC  - constants.

Equation (1) expresses Dalton's law experimentally, while equation (2) is a consequence from this
law, found by J. W. Gibbs [1].  Let us note that volume V  in these equations is common to all

components of the mixture and has no indexes i , therefore it is constant when the mixture volume is

not changed. In other words, changing V  corresponds to a real change of mixture volume and of each

component.

Taking the above concepts into consideration it is really strange that Gibbs derived an equation for

the entropy of mixing diffusable gases and marked the volumes occupied by the different gases with

indices as shown in the equation below. According to this equation, a certain amount of entropy was

produced during the mixing of 1 mole (total) of two different gases taken in the quantity of 1/2 mole

each.
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This result is really strange, because Gibbs established that the entropy of the gas mixture is equal

to the sum of the entropies of the components, if they separately occupied the entire volume at the

temperature of the mixture.

So, equation (3) should be written in the following way
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which corresponds to Gibbs' law. This equation assumes that: 1) these few gases are in contact with

each other and are separated only by moving thermoconductive membranes, 2) that the values of

pressure and temperature are common for all gases, and 3) that their volumes are 

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we consider equal parts of gases. If so, any change in the full volume  dV  of such a composite shall

correspond to the change in volume of each component 
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This last equation means that in a composite, each gas has the property as if it occupied the entire

volume. Further on, it is clear that the entropy of such a composite is equal to the sum of its

component entropies, so equation (4) is right in this case. But, if the membranes separating the gases

are taken out, then equation (4) is correct for the case of identical gases only.  In the case of mixing

different gases with no membranes to separate them, this process is not reversible. We cannot use

equation (4) in this case because it expresses the reversible situation, where  gases were mixed in the

considered volume. Therefore, for the process of diffusion during gas mixing, we can say only that

0>∆S , (6)

according to the second law of thermodynamics. So, we determined that the entropy of identical gases

mixing was equal to zero. There have been many attempts to calculate the work of separating or

mixing of different gases [2], but most of them showed that entropy mixing is independent of the gas

difference.
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So, we are wondering why the problem of the increasing entropy still exists? Let us consider the

known solutions of the Gibbs’ paradox. According to the purposes of this article we shall divide the

known solutions into two main groups – thermodynamics and statistical solutions. The reason for this

separation is in the approach to the problem. In the thermodynamics solutions, the work or heat

obtained either during mixing or separating different substances, are calculated. In the statistical

solution, entropy of the mixture is calculated directly and is based on the certain model of the

substance. Here we shall find that a common place thermodynamics solution of the Gibbs’ paradox

allows us to avoid the Gibbs’ paradox in order to find the right solution.

Similarly, the first attempt to find the work of mixing two different gases belongs to the Lord

Rayleigh [3]. Rayleigh suggested using the gravitational field for separating two different gases from a

mixture. Using this technique, these gases could not be completely separated because of the limited

height of the apparatus.  It was suggested that an infinite number of cycles would have to be used to

separate the pure gases from a mixture. Certainly, in the result of this process, the value of 2ln⋅R  was

obtained for mixing entropy of different gases taken in the quantity of 1/2 mole each. We cannot agree

with the possibility that this is a reversible process, where an infinite number of cycles were used. This

theory would actually require that, each reversible process be infinitely long.  If we have to make an

infinite number of the infinitely long processes then this would not provide a reversible condition of

this process at all.  G. Lorenz made a similar attempt [4] in 1907.  He suggested using an infinitely

long tube situated in the gravitational field to separate out the different gases from a mixture.

According to his calculation it appeared that the mixing entropy was constant for different gases and

equal to zero for identical gases. However, we cannot accept a hypothesis allowing a real process with

infinite shifts.  Actually, a limited speed of any shift of the substance is an experimentally proven fact.

That is why the process of using infinite shifts of the substance could not be realized, either. To tell the

truth, we have never found any valid suggestion for this process using an infinitely strong gravitational

field for separating different gases in a limited long tube.  Also, modern understanding of nature

prohibits such a process. We should note here that an infinite difference of the gravitational potential

could not be used because it contradicts the general relativity theory.

Having marked the impossibility of the  reversible process at an infinite difference in the

gravitational potentials of different gases, we shall now consider solutions of the Gibbs’ paradox,

which are based on separating different gases with half-penetrable membranes. As far as we know,

according to [2], the first attempt to use half-penetrable membranes for mixing two different gases was

made by Wiedeburg [5]. In this article, the work of the isothermal mixing of the two different gases,

taken in quantity of one mole each, was determined to be equal to 2ln⋅⋅TR , while work of the

mixing of the identical gases was equal to zero. It is interesting, that A. Einstein [6] expressed

considerable doubts in the possible existence of ideal half-penetrable membranes. However, he also

states, that the existence of such membranes did not contradict  the second law of the thermodynamics

and could therefore be accepted. This same idea was expressed very clearly by von Neumann [6], who

suggested that any conceivable process could be used for deriving thermodynamics theorems. It seems
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to us, that both of the mentioned scientists (Einstein and Neumann) had considerable doubts in this

approach and we do not understand why they used it. It is clear to us, that the ideal half-penetrable

membrane should provide, in some way, an infinite difference of the potentials for different

substances. It was shown above that such an infinite difference in the potentials could not result from a

gravitational field, so we have to decide if this infinite difference could be created by other means.

This approach to the problem is known as the so-called operational solution of the Gibbs’ paradox

[2]. This solution covers both thermodynamics solutions and statistical solutions of the paradox. Here,

we shall consider only the thermodynamics part of this solution, because the statistic part of this

solution shall be apparent at the end of the present article. We shall not consider the historical

development of these solutions, because it has already been covered in the book by Khaytun [2]. So,

the interaction between measurement apparatus and mixing gases is considered in this case. The

concept of partly separated gases is the main idea of the operational solution [7]. And according to

Khaytun et al [7], any half-penetrable membrane (treated as a gas-separating apparatus) cannot be

ideal for similar gases. This means that the said entropy difference could not exist for similar gases as

an experimentally measured value. This fact removes Gibbs’ paradox according to the operational

solution. However, this approach is not generally accepted [8]. Even more, it has been shown by

Zaraiskii [8], that separating different substances with a non-ideal apparatus leads to new paradoxes. In

reality, this hypothesis contradicts the existence of the equal molecules, because in order to determine

if the molecules are identical, a gas-separating apparatus without errors is needed which is impossible

according to operational theory. The drawback of this theory according to Zaraiskii [8] is the

dependence of the physical processes on the observer’s point of view. In reality, changes in entropy in

this case depend on the gas-distinguishing apparatus quality. In other words, a different final entropy is

obtained by mixing the same gases by various apparatuses even though all other parameters are held

constant. It looks strange. However, such operational approach was developed further. And it is

interesting, that in the works by Lin [9,10] results were consistent with the paradoxes found by

Zaraiskii [8], i.e. entropy mixing is maximal at mixing the same substances and is minimal at mixing

different substances. We cannot accept this approach to the problem because these results contradict

the second law of the thermodynamics, due to the fact that mixing of the same gas is a reversible

process which means that no change in entropy can occur at all. We shall not analyze the statistical

part of these works here. Also, we simply cannot understood why the author of these articles [9,10]

made the conclusion that the entropy of mixing oil and water is equal to zero which was deduced from

the fact that their liquid phases do not mix self-willed. From our point of view, such behavior of

liquids means that their chemical potentials would be higher inside other liquids only. This example is

similar to the case where gases with different molal weights do not mix in a vertically oriented tube

placed in a gravitational field because the mixing entropy is equal to zero. It is clear in this case, that

such mixing corresponds to increasing mixture free energy and therefore cannot be made self-willed.

However, the vapors of oil and water can mix in any alignment. So, this example does not demonstrate

anything.
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The approach, which is the closest to ours, is expressed by Blumenfeld et al. [11]. There are

specific requirements that need to be met in order for a gas-separating apparatus to completely

separate similar substances. The authors showed that a gas-separating apparatus must be absolutely

solid (which corresponds to creating an infinite difference in the potentials of the substances according

to our opinion) or must be at a temperature of absolute zero to allow complete separation of different

substances. However, we know that the third law of the thermodynamics prohibits the existence of

temperatures equal to absolute zero [12], and special relativity theory prohibits the existence of the

substances that are completely solid.  Therefore, we found that all known thermodynamics solutions of

the Gibbs paradox use the processes prohibited either by thermodynamics or by the relativity theory.

In this article, we consider gases with equal potentials in all conditions as identical. Thus, to obtain

an accurate value of the ideal gases mixing entropy, it is necessary to calculate the entropy of a

reversible process of mixing or separating the ideal gases. We consider only reversible processes,

where an infinite number of cycles, infinite shifts, infinite potentials, infinite work or heats are not

allowed. In other words, we state that reversible processes that use infinite shifts, infinite value of

work or heat for limited quantities of substance cannot exist.

Entropy Calculation of the Reversible Separating of Ideal Gases

Let us find the work 1A  of separating two different gases using a reversible isothermal process,

which allows us to find the entropy of the reversible mixing of these gases in the following way

T

A
S 1=∆ , (7)

because we consider ideal gases, assuming that their specific molal heats are constant, and therefore

any quantity of heat obtained or spent in our isothermal process has to be transformed into work.

To separate different gases, a vertically oriented tube with length 2h is placed in a gravitational
field with acceleration g . A mixture of equal molal parts of two ideal gases is injected into the central

part of the tube at pressure 0P  with volume 0V . The work 0A  is spent per mole of mixture

TRVPA ⋅−=⋅−= 000 (8)

The work +A  of taking out 1/2 mole of the gas mixture from the top of the tube and the work −A

of taking out 1/2 mole of the gas mixture from the bottom of the tube are

TRVPVPAA ⋅⋅=⋅=⋅== −−++−+ 2

1
, (9)
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where  +P - mixture pressure at height h , +V - volume of 1/2 mole of ideal gas at pressure +P , −P  -

mixture pressure at deep h , −V  - volume of 1/2 mole of ideal gas at pressure −P .

To find pressures +P  and −P  let us use Dalton's law (1) and barometric law. So
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where 1m  - molal mass of gas 1, 2m - molal mass of gas 2.

At isothermal compression +V  to 20V  at pressure 0P  the work +PA  has to be spent and at

isothermal expansion −V  to 20V  at pressure 0P , the work −PA  has to be obtained in the following

quantities
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To calculate mechanic work +mA  obtained by descending the gas in volume +V  at depth h  and

mechanic work −mA  spent by lifting the gas in volume +V  to height h , let us calculate the masses of

these mixtures, defining them as +M  and −M  respectively.

Since ( ) ++++ ⋅+= VM 21 ρρ  and ( ) −−−− ⋅+= VM 21 ρρ

where +1ρ  - density of gas 1 at height h , +2ρ  - density of gas 2 at height h , −1ρ  - density of gas 1 at

deep h , −2ρ  - density of gas 2 at deep h ,

and
 
  

TR

P

⋅
=ρ   , (12)

then, using the barometric law, we obtain,
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Therefore, the sought quantities of mechanical work are

hgMAm ⋅⋅= ++ ,

hgMAm ⋅⋅−= −− .

Then the following work 1A is spent on separating 1 mole of mixture into 2 different volumes of

mixtures with the different concentrations of components:
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However, we obtained mixtures of the separated gases again. If we indicate as y  the relative

difference in potentials of the gases:
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then we can find the molal fraction of gases in volumes +V  and −V  using (10) and (12) as

( )yx exp111 +=+ ,

( )( )yx −+=+ exp112 ,

( )( )yx −+=− exp111 ,

( )yx exp112 +=− . (15)

where +1x - molal fraction of gas 1 in volume +V , +2x  - molal fraction of gas 2 in volume +V , −1x -

molal fraction of gas 1 in volume  −V , −2x - molal fraction of gas 2 in volume −V .
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So the entropy of mixing two different gases taken in quantity 1/2 mole each according to (7) is
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The Analysis of Results

Now we can find the entropy of separating similar gases, for which 0→y  at any h.

0lim
0

=∆
→

S
y

which means that the entropy of separating or mixing identical gases is equal to zero. Thus we can see

that the entropy of separating gases from their mixture depends on the relative difference of their

potentials to temperature. We should indicate that pure gases are not obtained as a result of such

separating, but their mixtures with component fractions are given in equation (15). Hence, in order to

completely separate gases at temperatures different from zero, a process with an infinite difference of

gas potentials, an infinite number of cycles, or an infinite work or heat would be required. But we have

already stated that such a reversible process as explained in the previous sentence is impossible.

As the quantity of heat or work which is spent in an unreversible processes is more than in a

reversible processes, (according to the second law of thermodynamics), therefore, obtaining a

completely pure substances at temperatures different from zero is impossible.  The consequence of this

result is that a complete vacuum in final volume cannot exist and that ideal half-penetrable membranes

cannot be created, because in order to exist there must be an infinite difference in potentials between

the different gases. Having determined that different gases may reversibly mix only at definite

potential differences which is dependent on the fractions of mixing gases, we can now calculate the
entropy of mixing gases as a function of their molal fraction before mixing. We shall define y  from

(14) as a function of +1x  in the following way

+

+−
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1

11
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x

x
y .

After substituting it in (16) we can see that the entropy of  reversible mixing of the ideal gases in
two volumes containing 1/2 mole of mixture each with main component concentration −+ = 21 xx  is

accordingly

( ) ( )( )++++ ⋅+−−+⋅=∆ 1111 ln1ln12ln xxxxRS (17)
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This equation shows the absence of Gibbs' paradox. In reality, for identical gases, while, 21 mm =

we can find
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However, having determined the impossibility of the existence of pure substances, we can say that

the entropy of mixing ideal gases will always be less than for pure substances and depends on the

difference in potentials between the gases in the mixture. This dependency expresses the possibility in

principal of obtaining more clean substances when the substances in the mixture are more different.

So, the mixing entropy for these substances shall be higher than for mixing similar substances that

cannot be cleanly separated one from another.

We should note here, that equation (17) was known years ago ([12], for example). However, this

equation was not considered as solution of the Gibbs’ paradox, because it seemed that the entropy of

mixing pure gases was independent of their difference in potential. We determined in our article that

obtaining a pure substance was totally impossible, so only equation (17) has a physical sense.

It is interesting that equation (17) coincides with the final expression of the operational theory of

the Gibbs’ paradox (equation 9.7 in [2]):

( ) ( )( )wwwwRS −⋅−+⋅+⋅=∆ 1ln1ln2ln ,

where w is probability of separating the different gases by the separating apparatus. However we

consider our result as new for the following reasons:

1. We showed that the existence of pure gases was a wrong model of the real situation.

2. Having determined impossibility of the existence of pure substances in general, we can see why

statistical approaches cannot be used to find solution to the Gibbs’ paradox.  In reality, all of these

approaches are based on the assumption that pure gases are being mixed. Certainly, any further correct

calculations that start from these assumptions should lead to the fact, that entropy mixing does not

depend on the difference between mixing gases.

3. We showed that entropy mixing does indeed depend on the difference in conditions (such as

molal fractions) of the mixed substances during mixing process only.
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Conclusions

1. The calculation of the ideal gases mixing entropy is a classic thermodynamic problem, which can

be solved by methods of classic thermodynamics supplemented with postulates about the impossibility

of reversible processes using infinite shifts, infinite values of work or heat involved in processes with

limited quantities of substance.

2. Calculation of the ideal gases reversible mixing work shows the absence of the Gibbs' paradox.

3. Entropy of ideal gases mixing is determined by Equation (17), where gas molal fraction

corresponds to the difference between gases.

4. Obtaining finite volumes of pure substances or complete vacuum is impossible.

5. Half-penetrable membranes that are not completely penetrable to some substances cannot be

created.
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