energies-logo

Journal Browser

Journal Browser

Challenges and Research Trends of Energy Conservation and Efficient Utilization for Thermal Energy

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "B: Energy and Environment".

Deadline for manuscript submissions: 20 June 2025 | Viewed by 291

Special Issue Editor

College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
Interests: energy conservation and efficient utilization; supercritical carbon dioxide power cycle; heat transfer enhancement; battery thermal management; aerodynamic optimization; turbomachinery design; gas turbine; CFD simulation; modeling and optimization of various energy systems
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Energy conservation and efficient utilization are crucial topics for research and industry to alleviate the current energy and environmental problems. This Special Issue will consider a wide range of scientific and technological research on highly efficient energy utilization and conversion technologies, energy harvesting and waste heat recovery technologies, and advanced energy storage technologies. We would like to invite submissions to this Special Issue to collect the latest developments and applications of energy conservation and efficient utilization for thermal energy in different fields. Original research and review articles are welcome. Areas of interest include, but are not limited to, the following:

  • Enhanced heat transfer theory and applications;
  • Highly efficient heat exchange device design;
  • Energy harvesting and waste heat recovery;
  • Thermal energy conversion theory and applications;
  • Advanced thermodynamic systems and other thermal energy utilization systems;
  • Sensible heat storage and latent heat storage;
  • Thermochemical heat storage;
  • Advanced thermal management for batteries, electronics, etc.

Dr. Feng Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • heat transfer enhancement
  • energy harvesting
  • energy conversion
  • energy storage
  • thermal management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 4510 KiB  
Article
Molten-Salt-Based Thermal Storage for Thermal Power Unit Plant Peaking
by Fengying Ren, Fanxing Meng, Hao Liu, Haiyan Yu, Li Xu and Xiaohan Ren
Energies 2025, 18(10), 2522; https://doi.org/10.3390/en18102522 - 13 May 2025
Viewed by 150
Abstract
As the integration of renewable energy sources continues to increase, thermal power units are increasingly required to enhance their operational flexibility to accommodate grid fluctuations. However, frequent load variations in conventional thermal power plants result in decreased efficiency, accelerated equipment wear, and high [...] Read more.
As the integration of renewable energy sources continues to increase, thermal power units are increasingly required to enhance their operational flexibility to accommodate grid fluctuations. However, frequent load variations in conventional thermal power plants result in decreased efficiency, accelerated equipment wear, and high operational costs. In this context, molten-salt thermal energy storage (TES) has emerged as a promising solution due to its high specific heat capacity and thermal stability. By enabling the storage of surplus energy and its regulated release during peak demand periods, molten salt TES contributes to improved grid stability, reduced start-up frequency, and minimized operational disturbances. This study employs comprehensive thermodynamic simulations to investigate three representative schemes for heat storage and release. The results indicate that the dual steam extraction configuration (Scheme 3) offers the highest thermal storage capacity and peak-load regulation potential, albeit at the cost of increased heat consumption. Conversely, the single steam extraction configurations (Scheme 1 and 2) demonstrate improved thermal efficiency and reduced system complexity. Furthermore, Scheme 3, which involves extracting feedwater from the condenser outlet, provides enhanced operational flexibility but necessitates a higher initial investment. These findings offer critical insights into the optimal integration of molten-salt thermal-storage systems with conventional thermal power units. The outcomes not only highlight the trade-offs among different design strategies but also support the broader objective of enhancing the efficiency and adaptability of thermal power generation in a renewable-dominated energy landscape. Full article
Show Figures

Figure 1

Back to TopTop