Topic Editors

College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Enhanced Heat Transfer and Advanced Energy Conversion Technology, 2nd Edition

Abstract submission deadline
30 September 2026
Manuscript submission deadline
30 November 2026
Viewed by
2607

Topic Information

Dear Colleagues,

The following Topic is a continuation of the previous successful Topic “Enhanced Heat Transfer and Advanced Energy Conversion Technology” (https://www.mdpi.com/topics/NQ0C9K0SO1). Heat transfer enhancement and highly efficient energy conversion are crucial topics for research and industry to alleviate the current severe energy and environmental situation. The following Topic will consider a wide range of scientific and technological research on enhanced heat transfer in natural and forced convection, phase-change heat transfer, highly efficient heat-exchange devices, advanced thermal management technologies, and energy utilization and conversion technologies. We would like to invite submissions to this Topic to collect the latest developments and applications of enhanced heat transfer and advanced energy conversion technology in different fields. Original research and review articles are welcomed. Areas of interest include, but are not limited to, the following:

  • Enhanced heat transfer theory and applications;
  • Modified heat transfer surface geometries;
  • Enhanced heat transfer fluids;
  • Highly efficient heat-exchange device design;
  • Advanced thermal management for batteries, electronics, and so on.;
  • Energy conversion theory and applications;
  • Advanced thermodynamic systems and other energy utilization systems;
  • Energy harvesting and waste heat recovery.

Dr. Feng Zhang
Dr. Yong Li
Topic Editors

Keywords

  • heat transfer enhancement
  • heat exchanger
  • thermal management
  • energy conversion
  • energy recovery
  • energy harvesting
  • thermodynamic systems
  • multi-energy systems

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Sciences
applsci
2.5 5.3 2011 18.4 Days CHF 2400 Submit
Energies
energies
3.0 6.2 2008 16.8 Days CHF 2600 Submit
Fluids
fluids
1.8 3.4 2016 21.1 Days CHF 1800 Submit
Micromachines
micromachines
3.0 5.2 2010 16.2 Days CHF 2100 Submit
Processes
processes
2.8 5.1 2013 14.9 Days CHF 2400 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (3 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
19 pages, 4329 KiB  
Article
Experimental Analysis of Heat and Flow Characteristics on Inclined and Multiple Impingement Jet Heat Transfer Using Optimized Heat Sink
by Altug Karabey and Dogan Yorulmaz
Appl. Sci. 2025, 15(5), 2657; https://doi.org/10.3390/app15052657 - 1 Mar 2025
Viewed by 614
Abstract
Thermal management at a high heat flux is crucial for electronic devices, and jet impingement cooling is a promising solution. The heat transfer properties of a rectangular-finned heat sink are investigated under angled and multi-impingement jet configurations in this study. Experiments were conducted [...] Read more.
Thermal management at a high heat flux is crucial for electronic devices, and jet impingement cooling is a promising solution. The heat transfer properties of a rectangular-finned heat sink are investigated under angled and multi-impingement jet configurations in this study. Experiments were conducted with three different nozzle diameters, three different heat sink angles, three dimensionless nozzle-to-heat sink distance ratios, and five different velocity values. As a result, the obtained data are presented as Nu-Re graphs, and the impacts of the parameters on heat transfer (HT) are analyzed. It is concluded that the Nusselt number increases with the increasing nozzle diameter and Reynolds number, whereas it decreases with increasing distance between the nozzle and the heat sink. When comparing the angle values under an identical flow velocity, nozzle diameter, and dimensionless h/d distance experimental conditions, it was found that the Nusselt numbers were very close to each other. Under constant heat flux and for all investigated angles, the highest Nusselt number for the rectangular-finned inclined heat sink was observed at a 10° heat sink inclination, a nozzle diameter of D = 40 mm, a dimensionless distance of h/d = 6, and a flow velocity of 9 m/s. This study deepens the understanding of the heat transfer mechanism of impinging jets and provides an efficient method framework for practical applications. Full article
Show Figures

Figure 1

27 pages, 14341 KiB  
Article
Investigation on Thermal Performance of a Battery Pack Cooled by Refrigerant R134a in Ribbed Cooling Channels
by Tieyu Gao, Jiadian Wang, Haonan Sha, Hao Yang, Chenguang Lai, Xiaojin Fu, Guangtao Zhai and Junxiong Zeng
Energies 2025, 18(4), 1011; https://doi.org/10.3390/en18041011 - 19 Feb 2025
Viewed by 438
Abstract
This study numerically investigates the thermal performance of a refrigerant-based battery thermal management system (BTMS) under various operating conditions. A validated numerical model is used to examine the effects of cooling channel rib configurations (rib spacing and rib angles) and refrigerant parameters (mass [...] Read more.
This study numerically investigates the thermal performance of a refrigerant-based battery thermal management system (BTMS) under various operating conditions. A validated numerical model is used to examine the effects of cooling channel rib configurations (rib spacing and rib angles) and refrigerant parameters (mass flow rate and saturation temperature) on battery thermal behavior. Additionally, the impact of discharge C-rates is analyzed. The results show that a rib spacing of 11 mm and a rib angle of 60° reduce the maximum battery temperature by 0.8 °C (cooling rate of 2%) and improve temperature uniformity, though at the cost of a 130% increase in pressure drop. Increasing the refrigerant mass flow rate lowers the maximum temperature by up to 10%, but its effect on temperature uniformity diminishes beyond 20 kg/h. A lower saturation temperature enhances cooling but increases internal temperature gradients, while a higher saturation temperature improves uniformity at the expense of a slightly higher maximum temperature. Under high discharge rates (12C), the system’s cooling capacity becomes limited, leading to significant temperature rises. These findings provide insights that can aid in optimizing BTMS design to balance cooling performance, energy efficiency, and temperature uniformity. Full article
Show Figures

Figure 1

17 pages, 9960 KiB  
Article
Simulation and Assessment of Thermal-Stress Analysis of Welding Materials in IGBT
by Yang Yang, Jibing Chen, Bowen Liu and Yiping Wu
Micromachines 2024, 15(12), 1519; https://doi.org/10.3390/mi15121519 - 20 Dec 2024
Viewed by 903
Abstract
Insulated gate bipolar transistors (IGBTs), as an important power semiconductor device, are susceptible to thermal stress, thermal fatigue, and mechanical stresses under high-voltage, high-current, and high-power conditions. Elevated heat dissipation within the module leads to fluctuating rises in temperature that accelerate its own [...] Read more.
Insulated gate bipolar transistors (IGBTs), as an important power semiconductor device, are susceptible to thermal stress, thermal fatigue, and mechanical stresses under high-voltage, high-current, and high-power conditions. Elevated heat dissipation within the module leads to fluctuating rises in temperature that accelerate its own degradation and failure, ultimately causing damage to the module as a whole and posing a threat to operator safety. Through ANSYS Workbench simulation analysis, it is possible to accurately predict the temperature distribution, equivalent stress, and equivalent strain of solder materials under actual working conditions, thus revealing the changing laws of the heat–mechanical interaction in solder materials. Simulation analysis results show that, under steady-state operating conditions, the highest point of the IGBT module’s overall junction temperature occurs in the center of the chip. Nanogold exhibited the best performance in terms of temperature and equivalent stress-strain among the five solders studied in this paper; defects near the edges caused greater harm to the module compared to those closer to the solder layer’s center. In terms of stress, defects located near the edge corners produced larger strains. Crazing damage in joints allows for a faster transfer of heat sources away from the center; in terms of stress, crazing has fewer detrimental effects on the integrity of the module as compared to through cracks. Simulation analysis can model the interaction of heat and equipment under realistic work conditions, comparing and evaluating different types of solder materials to select the most suitable solder material for product design and material selection. This aids in enhancing design precision and reliability. Full article
Show Figures

Figure 1

Back to TopTop