Molten-Salt-Based Thermal Storage for Thermal Power Unit Plant Peaking
Abstract
1. Introduction
2. Retrofit Program for Thermal Unit Coupled Molten-Salt Thermal Storage System
2.1. Thermal Power Unit Modeling
2.2. Model Verification
2.3. Molten-Salt Heat Storage System
2.4. Thermal Storage
2.5. Exothermic Process
2.6. Evaluation Indicators
2.7. Capacity Analysis of Molten-Salt Thermal Storage Systems
3. Result and Discussion
3.1. Thermal Storage Process Analysis
3.2. Exothermic Process Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Xu, M.; Guo, W.; Xi, W.; Liu, C.; Sunden, B. Flow and heat transfer mechanism of a regenerative cooling channel mounted with pin-fins using supercritical CO2 as coolant. Int. J. Therm. Sci. 2025, 208, 109425. [Google Scholar] [CrossRef]
- Roper, R.; Harkema, M.; Sabharwall, P.; Riddle, C.; Chisholm, B.; Day, B.; Marotta, P. Molten salt for advanced energy applications: A review. Ann. Nucl. Energy 2022, 169, 108924. [Google Scholar] [CrossRef]
- Rajagopalan, K.K.; Karimineghlani, P.; Zhu, X.; Shamberger, P.J.; Sukhishvili, S.A. Polymers in molten inorganic salt hydrate phase change materials: Solubility and gelation. J. Mater. Chem. A 2021, 9, 25892–25913. [Google Scholar] [CrossRef]
- Caraballo, A.; Galán-Casado, S.; Caballero, Á.; Serena, S. Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis. Energies 2021, 14, 1197. [Google Scholar] [CrossRef]
- Bonk, A.; Sau, S.; Uranga, N.; Hernaiz, M.; Bauer, T. Advanced heat transfer fluids for direct molten salt line-focusing CSP plants. Prog. Energy Combust. Sci. 2018, 67, 69–87. [Google Scholar] [CrossRef]
- Bellan, S.; Kodama, T.; Gokon, N.; Matsubara, K. A review on high-temperature thermochemical heat storage: Particle reactors and materials based on solid–gas reactions. WIREs Energy Environ. 2022, 11, e440. [Google Scholar] [CrossRef]
- Mallco, A.; Portillo, C.; Kogan, M.J.; Galleguillos, F.; Fernández, A.G. A Materials Screening Test of Corrosion Monitoring in LiNO3 Containing Molten Salts as a Thermal Energy Storage Material for CSP Plants. Appl. Sci. 2020, 10, 3160. [Google Scholar] [CrossRef]
- Denbow, C.; Le Brun, N.; Mac Dowell, N.; Shah, N.; Markides, C.N. The potential impact of Molten Salt Reactors on the UK electricity grid. J. Clean. Prod. 2020, 276, 122873. [Google Scholar] [CrossRef]
- Miao, L.; Liu, M.; Zhang, K.; Zhao, Y.; Yan, J. Energy, exergy, and economic analyses on coal-fired power plants integrated with the power-to-heat thermal energy storage system. Energy 2023, 284, 129236. [Google Scholar] [CrossRef]
- Patel, S.; Mallapragada, D.S.; Ganesan, K.; Stoner, R. Repurposing coal plants into thermal energy storage—A techno-economic assessment in the Indian context. Environ. Res. Infrastruct. Sustain. 2024, 4, 035007. [Google Scholar] [CrossRef]
- Bartolucci, L.; Cordiner, S.; Mulone, V.; Pasquale, S.; Santarelli, M. Hybrid renewable energy systems: Impact of thermal storage on systems optimal design and performance. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2191, p. 020016. [Google Scholar]
- Ma, Z.; Wang, X.; Davenport, P.; Gifford, J.; Martinek, J. Economic Analysis of an Electric Thermal Energy Storage System Using Solid Particles for Grid Electricity Storage. In Proceedings of the ASME 2021 15th International Conference on Energy Sustainability Collocated with the ASME 2021 Heat Transfer Summer Conference, Online, 16–18 June 2021. [Google Scholar]
- Klasing, F.; Odenthal, C.; Trost, B.; Hirsch, T.; Bauer, T. Techno-Economic Assessment for Large Scale Thermocline Filler TES Systems in a Molten Salt Parabolic Trough Plant. In Proceedings of the AIP Conference Proceedings, Santiago, Chile, 26–29 September 2017. [Google Scholar]
- Ibrahim, A.; Peng, H.; Riaz, A.; Abdul Basit, M.; Rashid, U.; Basit, A. Molten salts in the light of corrosion mitigation strategies and embedded with nanoparticles to enhance the thermophysical properties for CSP plants. Sol. Energy Mater. Sol. Cells 2021, 219, 110768. [Google Scholar] [CrossRef]
- Zhang, Y. Applicability of Thermal Energy Storage in Future District Heating System-Design Methodologies and Performance Evaluations; Chalmers Tekniska Hogskola: Göteborg, Sweden, 2021. [Google Scholar]
- Palacios, A.; Navarro, M.E.; Barreneche, C.; Ding, Y. Hybrid 3 in 1 thermal energy storage system—Outlook for a novel storage strategy. Appl. Energy 2020, 274, 115024. [Google Scholar] [CrossRef]
- Prasad, J.S.; Muthukumar, P.; Desai, F.; Basu, D.N.; Rahman, M.M. A critical review of high-temperature reversible thermochemical energy storage systems. Appl. Energy 2019, 254, 113733. [Google Scholar] [CrossRef]
- Yingling, J.A.; Schorne-Pinto, J.; Aziziha, M.; Ard, J.C.; Mofrad, A.M.; Christian, M.S.; Dixon, C.M.; Besmann, T.M. Thermodynamic measurements and assessments for LiCl-NaCl-KCl-UCl3 systems. J. Chem.Thermodyn. 2023, 179, 106974. [Google Scholar] [CrossRef]
- Xu, J.; Liu, W.; Wang, Z.; Ma, S.; Zhao, G.; Gu, Y. Comparative investigation on the thermodynamic performance of coal-fired power plant integrating with the molten salt thermal storage system. J. Energy Storage 2024, 89, 111738. [Google Scholar] [CrossRef]
- Li, B.; Cao, Y.; He, T.; Si, F. Thermodynamic analysis and operation strategy optimization of coupled molten salt energy storage system for coal-fired power plant. Appl. Therm. Eng. 2024, 236, 121702. [Google Scholar] [CrossRef]
- Liang, X.; Xu, T.; Feng, B.; Jiang, Z. Optimization of heat extraction strategies in fault-controlled hydro-geothermal reservoirs. Energy 2018, 164, 853–870. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, L.; Zhao, H.; Zhang, X.; Xin, G. Thermodynamic analysis of the coal-fired combined heat and power units integrated with steam ejectors and thermal storage. J. Energy Storage 2024, 90, 111869. [Google Scholar] [CrossRef]
- Wei, S.; Liang, X.; Mohsin, T.; Wu, X.; Li, Y. A simplified dynamic model of integrated parabolic trough concentrating solar power plants: Modeling and validation. Appl. Therm. Eng. 2020, 169, 114982. [Google Scholar] [CrossRef]
- Pang, L.; Zhang, S.; Duan, L. Flexibility Improvement Study on the Double Reheat Power Generation Unit With a High Temperature Molten Salt Thermal Energy Storage. Proc. Chin. Soc. Electr. Eng. 2021, 41, 2682–2690. [Google Scholar]
- Cao, L.; Li, X.; Wang, D. A thermodynamic system of coal-fired power unit coupled S–CO2 energy-storage cycle. Energy 2022, 259, 125015. [Google Scholar] [CrossRef]
- Wang, A.; Liu, J.; Zhang, S.; Liu, M.; Yan, J. Steam generation system operation optimization in parabolic trough concentrating solar power plants under cloudy conditions. Appl. Energy 2020, 265, 114790. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, M.; Wang, C.; Wang, Z.; Chong, D.; Yan, J. Exergy analysis of the regulating measures of operational flexibility in supercritical coal-fired power plants during transient processes. Appl. Energy 2019, 253, 113487. [Google Scholar] [CrossRef]
- Ju, H.; Wang, Y.; Feng, Y.; Zheng, L. Numerical Study on Peak Shaving Performance of Combined Heat and Power Unit Assisted by Heating Storage in Long-Distance Pipelines Scheduled by Particle Swarm Optimization Method. Energies 2024, 17, 492. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, D.; Zhou, L. Modeling and thermal economy analysis of the coupled system of compressed steam energy storage and Rankine cycle in thermal power plant. Energy 2024, 291, 130309. [Google Scholar] [CrossRef]
Parameter | Unit | value |
---|---|---|
Rating | MW | 330 |
Main Steam Mass Flow Rate | t/h | 1024 |
Main Steam Pressure | MPa | 16.67 |
Main Steam Temperature | °C | 537 |
High-Pressure Cylinder Discharge Pressure | MPa | 3.556 |
Reheated Steam Mass Flow Rate | t/h | 835.783 |
Reheated Steam Pressure | MPa | 3.2 |
Reheated steam temperature | °C | 537 |
Back pressure | MPa | 0.00539 |
Feed water temperature | °C | 272.7 |
Heat consumption rate | Kj/Kwh | 7976 |
Gas consumption rate | Kg/Kwh | 3.03 |
Designed Value | Simulated Value | Relative Error/% | |||||||
---|---|---|---|---|---|---|---|---|---|
100% | 50% | 40% | 100% | 50% | 40% | 100% | 50% | 40% | |
Main Steam Pressure (MPa) | 16.67 | 9.26 | 7.41 | 16.67 | 9.287 | 7.474 | 0 | 0.03 | 0.86 |
Main Steam Mass Flow Rate (t/h) | 1002.4 | 486 | 396.5 | 1002.4 | 490.392 | 391.831 | 0 | 0.9 | 1.17 |
Reheated Steam Pressure (MPa) | 3.2 | 1.606 | 1.312 | 3.249 | 1.637 | 1.328 | 1.5 | 1.9 | 1.2 |
Reheated Steam Mass Flow Rate (t/h) | 835.783 | 421.835 | 346.806 | 851.287 | 429.757 | 350.265 | 1.8 | 1.87 | 0.9 |
Generation capacity (MW) | 330 | 165.018 | 132 | 326.157 | 165.018 | 132 | 1.2 | 0 | 0 |
Chemical Composition | Solar Salt | Hetic Salt | Hetic XL Salt |
---|---|---|---|
NaNO3/% | 60 | 7 | 7 |
KNO3/% | 40 | 53 | 45 |
NaNO2/% | 0 | 40 | 0 |
Ca(NO3)2/% | 0 | 0 | 48 |
Melting point/°C | 220 | 142 | 120 |
Upper temperature limit/℃ | 600 | 535 | 500 |
Intensity/(kg·m−3) (300 °C) | 1899 | 1640 | 1992 |
Stickiness/cp (300 °C) | 3.26 | 3.16 | 6.37 |
Thermal capacity/(J·kg−1·K−1) (300 °C) | 1495 | 1560 | 1447 |
Parameter | Value |
---|---|
Heat exchanger monotube length/m | 6 |
Single-tube outer diameter/mm | 25 |
Single-tube wall thickness/mm | 2.5 |
Inner diameter of the shell/m | 0.5 |
Single-tube thermal conductivity/W·(m·K)−1 | 17 |
Specific heat of a single tube/kJ·(kg·K)−1 | 502 |
Single-tube density/kg·m−3 | 7500 |
L/D ratio | 12 |
Velocity/(m·s−1) | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, F.; Meng, F.; Liu, H.; Yu, H.; Xu, L.; Ren, X. Molten-Salt-Based Thermal Storage for Thermal Power Unit Plant Peaking. Energies 2025, 18, 2522. https://doi.org/10.3390/en18102522
Ren F, Meng F, Liu H, Yu H, Xu L, Ren X. Molten-Salt-Based Thermal Storage for Thermal Power Unit Plant Peaking. Energies. 2025; 18(10):2522. https://doi.org/10.3390/en18102522
Chicago/Turabian StyleRen, Fengying, Fanxing Meng, Hao Liu, Haiyan Yu, Li Xu, and Xiaohan Ren. 2025. "Molten-Salt-Based Thermal Storage for Thermal Power Unit Plant Peaking" Energies 18, no. 10: 2522. https://doi.org/10.3390/en18102522
APA StyleRen, F., Meng, F., Liu, H., Yu, H., Xu, L., & Ren, X. (2025). Molten-Salt-Based Thermal Storage for Thermal Power Unit Plant Peaking. Energies, 18(10), 2522. https://doi.org/10.3390/en18102522