Brain/Neuroimaging 2025

A special issue of Diagnostics (ISSN 2075-4418). This special issue belongs to the section "Medical Imaging and Theranostics".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 2625

Special Issue Editor


E-Mail Website
Guest Editor
1. Department of Radiology and Nuclear Medicine, Esbjerg Hospital-University Hospital of Southern Denmark, Esbjerg, Denmark
2. Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
3. IRIS-Imaging Research Initiative Southwest, Esbjerg, Denmark
Interests: radiology; neuroimaging; multiple sclerosis; neurological disorders; neurodegeneration; neurological diseases; stroke
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Advanced neuroimaging approaches are being used as valuable additional tools in characterizing brain lesions alongside conventional imaging techniques. The importance of advanced neuroimaging approaches is that they can provide information regarding the underlying pathophysiology of various brain lesions. Currently, both computed tomography (CT) and magnetic resonance imaging (MRI) include modern neuroimaging techniques, like dual-energy CT, photon-counting CT, perfusion MRI, functional MRI, diffusion-weighted MRI, diffusion tensor imaging, MRI spectroscopy, and MRI fingerprinting. Advanced approaches like radiomics analysis applied to CT and MRI images are increasingly being used for brain lesion characterization. Combining advanced neuroimaging approaches along with artificial intelligence techniques such as machine learning and deep learning algorithms will further promote and accelerate the adaptation of advanced neuroimaging methods in routine clinical neuroimaging. This Special Issue, entitled "Brain/Neuroimaging 2025", will include the application of advanced neuroimaging approaches for the characterization of brain lesions (tumors, demyelinating changes, ischemic stroke, hemorrhage, and infectious lesions) and neurodegenerative disorders, as well as the monitoring of treatment-induced brain lesions.

Dr. Ronald Antulov
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Diagnostics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • advanced neuroimaging
  • dual-energy CT
  • photon-counting CT
  • perfusion MRI
  • MRI fingerprinting
  • brain lesions
  • neurodegenerative disorders
  • brain imaging
  • diagnosis
  • prognosis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

13 pages, 806 KiB  
Article
Structural Brain Changes in Patients with Congenital Anosmia: MRI-Based Analysis of Gray- and White-Matter Volumes
by Shun-Hung Lin, Hsian-Min Chen and Rong-San Jiang
Diagnostics 2025, 15(15), 1927; https://doi.org/10.3390/diagnostics15151927 - 31 Jul 2025
Viewed by 43
Abstract
Background: Congenital anosmia (CA) is a rare condition characterized by a lifelong inability to perceive odors, which significantly affects daily life and may be linked to broader neurodevelopmental alterations. This study aimed to investigate structural brain differences in patients with CA using MRI, [...] Read more.
Background: Congenital anosmia (CA) is a rare condition characterized by a lifelong inability to perceive odors, which significantly affects daily life and may be linked to broader neurodevelopmental alterations. This study aimed to investigate structural brain differences in patients with CA using MRI, focusing on gray matter (GM) and white matter (WM) changes and their implications for neurodevelopment. Methods: This retrospective study included 28 patients with CA and 28 age- and gender-matched healthy controls. Patients with CA were diagnosed at a single medical center between 1 January 2001 and 30 August 2024. Controls were randomly selected from an imaging database and had no history of olfactory dysfunction. Brain Magnetic Resonance Imaging (MRI)was analyzed using volumetric analysis in SPM12.GM and WM volumes were quantified across 11 anatomical brain regions based on theWFU_PickAtlas toolbox, including frontal, temporal, parietal, occipital, limbic, sub-lobar, cerebellum (anterior/posterior), midbrain, the pons, and the frontal–temporal junction. Left–right hemispheric comparisons were also conducted. Results: Patients with CA exhibited significantly smaller GM volumes compared to healthy controls (560.6 ± 114.7 cc vs. 693.7 ± 96.3 cc, p < 0.001) but larger WM volumes (554.2 ± 75.4 cc vs. 491.1 ± 79.7 cc, p = 0.015). Regionally, GM reductions were observed in the frontal (131.9 ± 33.7 cc vs. 173.7 ± 27.0 cc, p < 0.001), temporal (81.1 ± 18.4 cc vs. 96.5 ± 14.1 cc, p = 0.001), parietal (52.4 ± 15.2 cc vs. 77.2 ± 12.4 cc, p < 0.001), sub-lobar (57.8 ± 9.7 cc vs. 68.2 ± 10.2 cc, p = 0.001), occipital (39.1 ± 13.0 cc vs. 57.8 ± 8.9 cc, p < 0.001), and midbrain (2.0 ± 0.5 cc vs. 2.3 ± 0.4 cc, p = 0.006) regions. Meanwhile, WM increases were notable in the frontal(152.0 ± 19.9 cc vs. 139.2 ± 24.0 cc, p = 0.027), temporal (71.5 ± 11.5 cc vs. 60.8 ± 9.5 cc, p = 0.001), parietal (75.8 ± 12.4 cc vs. 61.9 ± 11.5 cc, p < 0.001), and occipital (58.7 ± 10.3 cc vs. 41.9 ± 7.9 cc, p < 0.001) lobes. A separate analysis of the left and right hemispheres revealed similar patterns of reduced GM and increased WM volumes in patients with CA across both sides. An exception was noted in the right cerebellum-posterior, where patients with CA showed significantly greater WM volume (5.625 ± 1.667 cc vs. 4.666 ± 1.583 cc, p = 0.026). Conclusions: This study demonstrates widespread structural brain differences in individuals with CA, including reduced GM and increased WM volumes across multiple cortical and sub-lobar regions. These findings suggest that congenital olfactory deprivation may impact brain maturation beyond primary olfactory pathways, potentially reflecting altered synaptic pruning and increased myelination during early neurodevelopment. The involvement of the cerebellum further implies potential adaptations beyond motor functions. These structural differences may serve as potential neuroimaging markers for monitoring CA-associated cognitive or emotional comorbidities. Full article
(This article belongs to the Special Issue Brain/Neuroimaging 2025)
Show Figures

Figure 1

20 pages, 4466 KiB  
Article
Pain-Related White-Matter Changes Following Mild Traumatic Brain Injury: A Longitudinal Diffusion Tensor Imaging Pilot Study
by Ho-Ching Yang, Tyler Nguyen, Fletcher A. White, Kelly M. Naugle and Yu-Chien Wu
Diagnostics 2025, 15(5), 642; https://doi.org/10.3390/diagnostics15050642 - 6 Mar 2025
Viewed by 1641
Abstract
Background: This study used diffusion tensor imaging (DTI) to detect brain microstructural changes in participants with mild traumatic brain injury (mTBI) who experienced post-traumatic headaches, a common issue that affects quality of life and rehabilitation. Despite its prevalence, the mechanisms behind post-traumatic headache [...] Read more.
Background: This study used diffusion tensor imaging (DTI) to detect brain microstructural changes in participants with mild traumatic brain injury (mTBI) who experienced post-traumatic headaches, a common issue that affects quality of life and rehabilitation. Despite its prevalence, the mechanisms behind post-traumatic headache are not well understood. Methods: Participants were recruited from Level 1 trauma centers, and MRI scans, including T1-weighted anatomical imaging and DTI, were acquired 1 month post-injury. Advanced imaging techniques corrected artifacts and extracted diffusion tensor measures reflecting white-matter integrity. Pain sensitivity assays were collected at 1 and 6 months post-injury, including quantitative sensory testing and psychological assessments. Results: Significant aberrations in axial diffusivity in the forceps major were observed in mTBI participants (n = 12) compared to healthy controls (n = 10) 1 month post-injury (p = 0.02). Within the mTBI group, DTI metrics at 1 month were significantly associated with pain-related and psychological outcomes at 6 months. Statistical models revealed group differences in the right sagittal stratum (p < 0.01), left insula (p < 0.04), and left superior longitudinal fasciculus (p < 0.05). Conclusions: This study shows that DTI metrics at 1 month post-injury are sensitive to mTBI and predictive of chronic pain and psychological outcomes at 6 months. Full article
(This article belongs to the Special Issue Brain/Neuroimaging 2025)
Show Figures

Figure 1

Other

Jump to: Research

14 pages, 2045 KiB  
Case Report
Fast Evolving Glioblastoma in a Pregnant Woman: Diagnostic and Therapeutic Challenges
by Ivan Bogdanovic, Rosanda Ilic, Aleksandar Kostic, Aleksandar Miljkovic, Filip Milisavljevic, Marija M. Janjic, Ivana M. Bjelobaba, Danijela Savic and Vladimir Bascarevic
Diagnostics 2025, 15(15), 1836; https://doi.org/10.3390/diagnostics15151836 - 22 Jul 2025
Viewed by 328
Abstract
Background and Clinical Significance: Gliomas diagnosed during pregnancy are rare, and there are no established guidelines for their management. Effective treatment requires a multidisciplinary approach to balance maternal health and pregnancy preservation. Case Presentation: We here present a case of rapidly progressing glioma [...] Read more.
Background and Clinical Significance: Gliomas diagnosed during pregnancy are rare, and there are no established guidelines for their management. Effective treatment requires a multidisciplinary approach to balance maternal health and pregnancy preservation. Case Presentation: We here present a case of rapidly progressing glioma in a 33-year-old pregnant woman. The patient initially presented with a generalized tonic–clonic seizure at 21 weeks’ gestation. Imaging revealed a tumor in the right cerebral lobe, involving both cortical and subcortical structures, while magnetic resonance spectroscopy suggested a low-grade glioma. The patient remained clinically stable for two months but then developed severe headaches; MRI showed a worsening mass effect. At 34 weeks’ gestation, an emergency and premature caesarean section was performed under general anesthesia. The patient then underwent a craniotomy for maximal tumor resection, which was histologically and molecularly diagnosed as IDH wild-type glioblastoma (GB). Using qPCR, we found that the GB tissue showed upregulated expression of genes involved in cell structure (GFAP, VIM) and immune response (SSP1, TSPO), as well as increased expression of genes related to potential hormone response (AR, CYP19A1, ESR1, GPER1). After surgery, the patient showed resistance to Stupp protocol therapy, which was substituted with lomustine and bevacizumab combination therapy. Conclusions: This case illustrates that glioma may progress rapidly during pregnancy, but a favorable obstetric outcome is achievable. Management of similar cases should respect both the need for timely treatment and the patient’s informed decision. Full article
(This article belongs to the Special Issue Brain/Neuroimaging 2025)
Show Figures

Figure 1

Back to TopTop