Progress in Granular Materials Research in the Asia-Pacific Region

A special issue of Condensed Matter (ISSN 2410-3896). This special issue belongs to the section "Physics of Materials".

Deadline for manuscript submissions: 31 August 2024 | Viewed by 1171

Special Issue Editor


E-Mail Website
Guest Editor
Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
Interests: granular materials; nonlinear acoustic physics

Special Issue Information

Dear Colleagues,

This Special Issue aims to provide an exchange platform for the latest achievements in the field of granular matter including new theories, technologies, and approaches, as well as its applications to geomechanics, civil engineering mechanics, and other fields. Contributions regarding granular flow, segregation and mixing, packing problems, and nonlinear acoustic physics in granular matter are of particular interest. Related interdisciplinary research, such as on active matter, colloid, and traffic flow, is also encouraged. Both original research and review articles are welcome.

Dr. Decai Huang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Condensed Matter is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • granular materials
  • granular flow
  • nonlinear acoustic physics
  • active matter
  • colloid

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 5862 KiB  
Article
Experimental Study on Coefficient of Restitution of Small-Sized Spherical Particles during Low-Speed Impact
by Tuo Li, Ran Li, Zhipeng Chi, Yuting Zhang and Hui Yang
Condens. Matter 2024, 9(1), 18; https://doi.org/10.3390/condmat9010018 - 05 Mar 2024
Viewed by 811
Abstract
This study presents experimental investigations on the normal restitution coefficients of a titanium bead (Ti), zirconia bead (ZrO2), and amorphous zirconium alloy sphere (Amor). The research explores the influence of particle diameter and collision velocity on the normal restitution coefficient between [...] Read more.
This study presents experimental investigations on the normal restitution coefficients of a titanium bead (Ti), zirconia bead (ZrO2), and amorphous zirconium alloy sphere (Amor). The research explores the influence of particle diameter and collision velocity on the normal restitution coefficient between two independent, identical spherical particles of different materials. The experimental findings demonstrate that increasing the particle diameter results in more effective plastic deformation, leading to higher energy losses and, subsequently, smaller coefficients of restitution. Similarly, higher particle velocities cause more energy dissipation during collisions, resulting in smaller restitution coefficients. Comparing particles of different materials, those with larger yield strengths exhibit more elastic behavior, experience less initial energy loss due to deformation, and reach the maximum restitution coefficient (elastic state) with fewer collisions. This finding suggests that material properties significantly influence the overall energy dissipation and elastic response in the particles. To validate the experimental results, existing models are compared and discussed. Furthermore, potential physical mechanisms responsible for the observed behavior are explored, providing valuable insights into the collision dynamics in spherical particle interactions. Overall, this study contributes to a better understanding of the factors affecting the normal restitution coefficient in particle collisions, enabling the design and optimization of particle systems for diverse applications in condensed matter and related fields. Full article
(This article belongs to the Special Issue Progress in Granular Materials Research in the Asia-Pacific Region)
Show Figures

Figure 1

Back to TopTop