Hydrolyzed Chitin and Chitosan Blends as Reversible and Biocompatible Sorbents for Carbon Dioxide Sorption
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kawahata, H.; Fujita, K.; Iguchi, A.; Inoue, M.; Iwasaki, S.; Kuroyanagi, A.; Maeda, A.; Manaka, T.; Moriya, K.; Takagi, H.; et al. Perspective on the Response of Marine Calcifiers to Global Warming and Ocean Acidification—Behavior of Corals and Foraminifera in a High CO2 World “Hot House”. Prog. Earth Planet. Sci. 2019, 6, 5. [Google Scholar] [CrossRef]
- Keith, D.W. Why Capture CO2 from the Atmosphere? Science 2009, 325, 1654–1655. [Google Scholar] [CrossRef]
- Felder, F.A. Carbon Capture and Storage: Technologies, Policies, Economics, and Implementation Strategies; CRC: Boca Raton, FL, USA, 2013. [Google Scholar]
- Bottoms, R.R. Process for Separating Acidic Gases. U.S. Patent Application No. US1783901A, 2 December 1930. [Google Scholar]
- Robinson, K.; McCluskey, A.; Attalla, M.I. An ATR-FTIR Study on the Effect of Molecular Structural Variations on the CO2 Absorption Characteristics of Heterocyclic Amines, Part II. ChemPhysChem 2012, 13, 2331–2341. [Google Scholar] [CrossRef] [PubMed]
- Gielen, D.; Podkanski, J.; Unander, F. International Energy Agency. In Prospects for CO2 Capture and Storage; Organization for Economic Co-Operation and Development (OECD): Paris, France, 2004. [Google Scholar]
- Blomen, E.; Hendriks, C.; Neele, F. Capture Technologies: Improvements and Promising Developments. Energy Procedia 2009, 1, 1505–1512. [Google Scholar] [CrossRef]
- Gray, M.L.; Fauth, J.P.; Baltrus, H. Henry Pennline. Int. J. Green House Gas Control 2008, 2, 3–8. [Google Scholar] [CrossRef]
- Dhanabalan, V.; Xavier, K.A.M.; Eppen, S.; Joy, A.; Balange, A.; Asha, K.K.; Murthy, L.N.; Nayak, B.B. Characterization of Chitin Extracted from Enzymatically Deproteinized Acetes Shell Residue with Varying Degree of Hydrolysis. Carbohydr. Polym. 2021, 253, 117203. [Google Scholar] [CrossRef] [PubMed]
- Dayakar, B.; Xavier, K.A.M.; Das, O.; Porayil, L.; Balange, A.K.; Nayak, B.B. Application of Extreme Halophilic Archaea as Biocatalyst for Chitin Isolation from Shrimp Shell Waste. Carbohydr. Polym. 2021, 2, 100093. [Google Scholar] [CrossRef]
- Rasweefali, M.; Sabu, S.; Sunooj, K.; Sasidharan, A.; Xavier, K.M. Consequences of chemical deacetylation on physicochemical, structural and functional characteristics of chitosan extracted from deep-sea mud shrimp. Carbohydr. Polym. 2021, 2, 100032. [Google Scholar] [CrossRef]
- Silva, N.C.M.; De Sá, L.F.R.; Oliveira, E.A.G.; Costa, M.N.; Ferreira, A.T.S.; Perales, J.; Fernandes, K.V.S.; Xavier-Filho, J.; Oliveira, A.E.A. Albizia lebbeck Seed Coat Proteins Bind to Chitin and Act as a Defense against Cowpea Weevil Callosobruchus maculatus. J. Agric. Food Chem. 2016, 64, 3514–3522. [Google Scholar] [CrossRef]
- Maliki, S.; Sharma, G.; Kumar, A.; Moral-Zamorano, M.; Moradi, O.; Baselga, J.; Stadler, F.J.; García-Peñas, A. Chitosan as a Tool for Sustainable Development: A Mini Review. Polymers 2022, 14, 1475. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Mukhtar Ahmed, K.B.; Khan, M.M.A.; Siddiqui, H.; Jahan, A. Chitosan and Its Oligosaccharides, a Promising Option for Sustainable Crop Production—A Review. Carbohydr. Polym. 2020, 227, 115331. [Google Scholar] [CrossRef]
- Hammi, N.; Chen, S.; Dumeignil, F.; Royer, S.; El Kadib, A. Chitosan as a Sustainable Precursor for Nitrogen-Containing Carbon Nanomaterials: Synthesis and Uses. Mater. Today Sustain. 2020, 10, 100053. [Google Scholar] [CrossRef]
- Özel, N.; Elibol, M. A Review on the Potential Uses of Deep Eutectic Solvents in Chitin and Chitosan Related Processes. Carbohydr. Polym. 2021, 262, 117942. [Google Scholar] [CrossRef] [PubMed]
- Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Foungchuen, J.; Pairin, N.; Phalakornkule, C. Impregnation of Chitosan onto Activated Carbon for Adsorption Selectivity towards CO2: Biohydrogen Purification. Appl. Sci. Eng. Prog. 2016, 9, 197–209. [Google Scholar] [CrossRef]
- Guo, L.P.; Hu, X.; Hu, G.S.; Chen, J.; Li, Z.M.; Dai, W.; Dacosta, H.F.M.; Fan, M.H. Tetraethylenepentamine modified protonated titanate nanotubes for CO2 capture. Fuel Process. Technol. 2015, 138, 663–669. [Google Scholar] [CrossRef]
- Jo, D.H.; Jung, H.; Shin, D.K.; Lee, C.H.; Kim, S.H. Effect of Amine Structure on CO2 Adsorption over Tetraethylenepentamine Impregnated Poly Methyl Methacrylate Supports. Sep. Purif. Technol. 2014, 125, 187–193. [Google Scholar] [CrossRef]
- Prud’homme, A.; Nabki, F. Comparison between Linear and Branched Polyethylenimine and Reduced Graphene Oxide Coatings as a Capture Layer for Micro Resonant CO2 Gas Concentration Sensors. Sensors 2020, 20, 1824. [Google Scholar] [CrossRef]
- Fisher, J.C.; Tanthana, J.; Chuang, S.S.C. Oxide-Supported Tetraethylenepentamine for CO2 Capture. Environ. Prog. Sustain. Energy 2009, 28, 589–598. [Google Scholar] [CrossRef]
- Yamada, H.; Chowdhury, F.A.; Fujiki, J.; Yogo, K. Enhancement Mechanism of the CO2 Adsorption-Desorption Efficiency of Silica-Supported Tetraethylenepentamine by Chemical Modification of Amino Groups. ACS Sustain. Chem. Eng. 2019, 7, 9574–9581. [Google Scholar] [CrossRef]
- Keramati, M.; Ghoreyshi, A.A. Improving CO2 Adsorption onto Activated Carbon through Functionalization by Chitosan and Triethylenetetramine. Phys. E Low Dimens. Syst. Nanostruct. 2014, 57, 161–168. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, X.; Zhang, J.; Yan, N. Chitin-Derived Mesoporous, Nitrogen-Containing Carbon for Heavy-Metal Removal and Styrene Epoxidation. ChemPlusChem 2015, 80, 1556–1564. [Google Scholar] [CrossRef] [PubMed]
- Pohako-Esko, K.; Bahlmann, M.; Schulz, P.S.; Wasserscheid, P. Chitosan Containing Supported Ionic Liquid Phase Materials for CO2 Absorption. Ind. Eng. Chem. Res. 2016, 55, 7052–7059. [Google Scholar] [CrossRef]
- Wen, J.; Li, Y.; Wang, L.; Chen, X.; Cao, Q.; He, N. Carbon Dioxide Smart Materials Based on Chitosan. Progr. Chem. 2020, 32, 417–422. [Google Scholar] [CrossRef]
- Lopes, M.; Cecílio, A.; Zanatta, M.; Corvo, M.C. From Biopolymer Dissolution to CO2 Capture under Atmospheric Pressure—A Molecular View on biopolymer@Ionic Liquid Materials. J. Clean. Prod. 2022, 367, 132977. [Google Scholar] [CrossRef]
- Paiva, T.; Echeverria, C.; Godinho, M.H.; Almeida, P.L.; Corvo, M.C. On the Influence of Imidazolium Ionic Liquids on Cellulose Derived Polymers. Eur. Polym. J. 2019, 114, 353–360. [Google Scholar] [CrossRef]
- Trivedi, T.J.; Rao, K.S.; Kumar, A. Facile Preparation of Agarose–Chitosan Hybrid Materials and Nanocomposite Ionogels Using an Ionic Liquid via Dissolution, Regeneration and Sol–Gel Transition. Green Chem. 2014, 16, 320–330. [Google Scholar] [CrossRef]
- Yang, X.; Qiao, C.; Li, Y.; Li, T. Dissolution and Resourcfulization of Biopolymers in Ionic Liquids. React. Funct. Polym. 2016, 100, 181–190. [Google Scholar] [CrossRef]
- Mallakpour, S.; Dinari, M. Ionic Liquids as Green Solvents: Progress and Prospects. In Green Solvents II; Springer: Dordrecht, The Netherlands, 2012; pp. 1–32. [Google Scholar]
- Feng, J.; Zang, H.; Yan, Q.; Li, M.; Jiang, X.; Cheng, B. Dissolution and Utilization of Chitosan in a 1-carboxymethyl-3-methylimidazolium Hydrochloride Ionic Salt Aqueous Solution. J. Appl. Polym. Sci. 2015, 132, 41964. [Google Scholar] [CrossRef]
- Ferreira, I.C.; Araújo, D.; Voisin, P.; Alves, V.D.; Rosatella, A.A.; Afonso, C.A.M.; Freitas, F.; Neves, L.A. Chitin-Glucan Complex—Based Biopolymeric Structures Using Biocompatible Ionic Liquids. Carbohydr. Polym. 2020, 247, 116679. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yuan, B.; Liu, S.-W.; Yu, S.-T.; Xie, C.-X.; Liu, F.-S.; Shan, L.-J. Clean Preparation Process of Chitosan Oligomers in Gly Series Ionic Liquids Homogeneous System. J. Polym. Environ. 2012, 20, 388–394. [Google Scholar] [CrossRef]
- Liu, D.; Chen, Q.; Li, M.; Lou, B.; Yu, R.; Li, Z.; Zhang, Y. Influence of Carboxyl Anion on the Dissolution of Chitosan in Cholinium-Based Ionic Liquids. AIP Conf. Proc. 2018, 1971, 050015. [Google Scholar] [CrossRef]
- Shamshina, J.L. Chitin in Ionic Liquids: Historical Insights into the Polymer’s Dissolution and Isolation. A Review. Green Chem. 2019, 21, 3974–3993. [Google Scholar] [CrossRef]
- Eftaiha, A.F.; Alsoubani, F.; Assaf, K.I.; Troll, C.; Rieger, B.; Khaled, A.H.; Qaroush, A.K. An Investigation of Carbon Dioxide Capture by Chitin Acetate/DMSO Binary System. Carbohydr. Polym. 2016, 152, 163–169. [Google Scholar] [CrossRef]
- Osman, A.I.; Hefny, M.; Abdel Maksoud, M.I.A.; Elgarahy, A.M.; Rooney, D.W. Recent Advances in Carbon Capture Storage and Utilisation Technologies: A Review. Environ. Chem. Lett. 2021, 19, 797–849. [Google Scholar] [CrossRef]
- Elfving, J.; Kauppinen, J.; Jegoroff, M.; Ruuskanen, V.; Järvinen, L.; Sainio, T. Experimental Comparison of Regeneration Methods for CO2 Concentration from Air Using Amine-Based Adsorbent. Chem. Eng. J. 2021, 404, 126337. [Google Scholar] [CrossRef]
- Volkis, V.; Kumar, R.; Isloor, A.; Jiru, F. Biocompatible Polymeric Blends for the Reversible Capturing of Carbon Dioxide. Polym. Prepr. 2012, PMCE-409. [Google Scholar]
- Suginta, W.; Khunkaewla, P.; Schulte, A. Electrochemical Biosensor Applications of Polysaccharides Chitin and Chitosan. Chem. Rev. 2013, 113, 5458–5479. [Google Scholar] [CrossRef]
- Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S.V.; Tamura, H. Biomedical Applications of Chitin and Chitosan Based Nanomaterials—A Short Review. Carbohydr. Polym. 2010, 82, 227–232. [Google Scholar] [CrossRef]
- Dutta, K.; Dutta, J.; Tripathi, S. Chitin and chitosan: Chemistry, Properties and Applications. J. Sci. Ind. Res. 2004, 63, 20–31. [Google Scholar]
- Padaki, M.; Isloor, A.M.; Wanichapichart, P. Polysulfone/N-Phthaloylchitosan Novel Composite Membranes for Salt Rejection Application. Desalination 2011, 279, 409–414. [Google Scholar] [CrossRef]
- Bashir, S.; Teo, Y.Y.; Ramesh, S.; Ramesh, K.; Khan, A.A. N-Succinyl Chitosan Preparation, Characterization, Properties and Biomedical Applications: A State of the Art Review. Rev. Chem. Eng. 2015, 31, 563–597. [Google Scholar] [CrossRef]
- Kumar, R.; Isloor, A.M.; Ismail, A.F.; Matsuura, T. Performance Improvement of Polysulfone Ultrafiltration Membrane Using N-Succinyl Chitosan as Additive. Desalination 2013, 318, 1–8. [Google Scholar] [CrossRef]
- Kumar, R.; Isloor, A.M.; Ismail, A.F.; Matsuura, T. Synthesis and Characterization of Novel Water Soluble Derivative of Chitosan as an Additive for Polysulfone Ultrafiltration Membrane. J. Membr. Sci. 2013, 440, 140–147. [Google Scholar] [CrossRef]
- Benham, M.J.; Ross, D.K. Experimental Determination of Absorption-Desorption Isotherms by Computer-Controlled Gravimetric Analysis. Z. Phys. Chem. 1989, 163, 25–32. [Google Scholar] [CrossRef]
- Shiflett, M.B.; Corbin, D.R.; Yokozeki, A. Comparison of the Sorption of Trifluoromethane (R-23) on Zeolites and in an Ionic Liquid. Adsorp. Sci. Technol. 2013, 31, 59–83. [Google Scholar] [CrossRef]
- Rupley, J.A. The Hydrolysis of Chitin by Concentrated Hydrochloric Acid, and the Preparation of Low-Molecular-Weight Substrates for Lysozyme. Biochim. Biophys. Acta 1964, 83, 245–255. [Google Scholar] [CrossRef]
- Dutta, P.K. Chitin and Chitosan for Regenerative Medicine; Springer: New Delhi, India, 2016. [Google Scholar]
- Weiss, I.M.; Schönitzer, V. The Distribution of Chitin in Larval Shells of the Bivalve Mollusk Mytilus Galloprovincialis. J. Struct. Biol. 2006, 153, 264–277. [Google Scholar] [CrossRef]
- Irani, M.; Jacobson, A.T.; Gasem, K.A.M.; Fan, M. Modified carbon nanotubes/tetraethylenepentamine for CO2 capture. Fuel 2017, 206, 10–18. [Google Scholar] [CrossRef]
- Roberts, G.A.F. Progress on Chemistry and Application of Chitin and Its Derivatives. Pol. Chitin Soc. 2008, 13, 7–15. [Google Scholar]
- Bashir, S.; Teo, Y.Y.; Ramesh, S.; Ramesh, K.; Rizwan, M.; Rizwan, M. Synthesis and Characterization of pH-Sensitive N-Succinyl Chitosan Hydrogel and Its Properties for Biomedical Applications. J. Chil. Chem. Soc. 2019, 64, 4571–4574. [Google Scholar] [CrossRef]
- Fletcher, A.J.; Benham, M.J.; Thomas, K.M. Multicomponent Vapor Sorption on Active Carbon by Combined Microgravimetry and Dynamic Sampling Mass Spectrometry. J. Phys. Chem. B 2002, 106, 7474–7482. [Google Scholar] [CrossRef]
- Du, X.; Guang, W.; Cheng, Y.; Hou, Z.; Liu, Z.; Yin, H.; Huo, L.; Lei, R.; Shu, C. Thermodynamics Analysis of the Adsorption of CH4 and CO2 on Montmorillonite. Appl. Clay Sci. 2020, 192, 105631. [Google Scholar] [CrossRef]
- Epling, W.S.; Peden, C.; Szanyi, J. Carbonate Formation and Stability on a Pt/BaO/γ-Al2O3 NOX Storage/Reduction Catalyst. J. Phys. Chem. C 2008, 112, 10952–10959. [Google Scholar] [CrossRef]
- Smit, B.; Reimer, J.A.; Oldenburg, C.M. Introduction to Carbon Capture and Sequestration; Imperial College Press: London, UK, 2014. [Google Scholar]
- Park, H.; Jung, Y.M.; You, J.K.; Hong, W.H.; Kim, J.-N. Analysis of the CO2 and NH3 Reaction in an Aqueous Solution by 2D IR COS: Formation of Bicarbonate and Carbamate. J. Phys. Chem. A 2008, 112, 6558–6562. [Google Scholar] [CrossRef]
Entry | Sample Description | Sorption Capacity with 25% of CO2, gCO2/g Sample/Hour | Sorption Capacity with 40% of CO2, gCO2/g Sorbent/Hour | Temperature at Which the Desorption Starts, °C | Temperature at Which Full Release Was Recorded (Sorbent Comes to Its Original Weight), °C |
---|---|---|---|---|---|
1 | Pure chitosan 11,000 Daltons | 0.54 | 0.66 | 38 | 80 |
2 | Blend of 2.5% (w/w) chitosan in PSF | 0.06 | 0.08 | 45 | 80 |
3 | Blend of 5% (w/w) chitosan in PSF | 0.17 | 0.23 | 48 | 80 |
4 | NPPCS | 0.28 | 0.31 | 41 | 77 |
5 | NPPCS 10% in PSF | 0.12 | 0.16 | 44 | 80 |
6 | NPPCS 20% in PSF | 0.42 | 0.46 | 45 | 80 |
7 | NSCS | 0.36 | 0.41 | 44 | 75 |
8 | NSCS 10% in PSF | 0.20 | 0.29 | 48 | 80 |
9 | NSCS 20% in PSF | 0.48 | 0.53 | 50 | 80 |
Samples * | Adsorption Capacity mg CO2/g Sample/Hour |
---|---|
10% Pure Chitin | 0.15 |
20% Pure Chitin | 0.20 |
10% Shrimp Chitin | 0.28 |
20% Shrimp Chitin | 0.30 |
10% Crab Chitin | 0.23 |
20% Crab Chitin | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, P.; Barnes, B.; Johnson, R.; Volkis, V.V. Hydrolyzed Chitin and Chitosan Blends as Reversible and Biocompatible Sorbents for Carbon Dioxide Sorption. Compounds 2025, 5, 18. https://doi.org/10.3390/compounds5020018
Sharma P, Barnes B, Johnson R, Volkis VV. Hydrolyzed Chitin and Chitosan Blends as Reversible and Biocompatible Sorbents for Carbon Dioxide Sorption. Compounds. 2025; 5(2):18. https://doi.org/10.3390/compounds5020018
Chicago/Turabian StyleSharma, Preeti, Benjamin Barnes, Raekayla Johnson, and Victoria V. Volkis. 2025. "Hydrolyzed Chitin and Chitosan Blends as Reversible and Biocompatible Sorbents for Carbon Dioxide Sorption" Compounds 5, no. 2: 18. https://doi.org/10.3390/compounds5020018
APA StyleSharma, P., Barnes, B., Johnson, R., & Volkis, V. V. (2025). Hydrolyzed Chitin and Chitosan Blends as Reversible and Biocompatible Sorbents for Carbon Dioxide Sorption. Compounds, 5(2), 18. https://doi.org/10.3390/compounds5020018