cimb-logo

Journal Browser

Journal Browser

Hormonal Regulation in Germ Cell Development

A special issue of Current Issues in Molecular Biology (ISSN 1467-3045). This special issue belongs to the section "Biochemistry, Molecular and Cellular Biology".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 756

Special Issue Editor


E-Mail Website
Guest Editor
Department of Animal Resource Science, Hankyong National University, 327 Chungang-ro, Anseong-si 17579, Gyeonggi-do, Republic of Korea
Interests: cell biochemistry; livestock production; genetic engineering techniques; hormones; egg and sperm maturation; recombinant hormones
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In mammalian reproduction, pubertal maturation and gamete production, various hormones are secreted from the anterior pituitary gland, such as the follicle-stimulating hormone (FSH) and luteinizing hormone (LH), prolactin, growth hormone (GH), adrenocorticotropic hormone (ACTH) and thyroid-stimulating hormone (TSH) A series of events are involved in regulatory control. These processes involve differential gene expression and cell–cell interactions that are regulated by key endocrine stimuli, thereby affecting the proliferation, maturation and function of Sertoli cells, which produce regulatory signals and nutrients to maintain developing germ cells.

This Special Issue in Current Issues in Molecular Biology, entitled "Hormonal Regulation in Germ Cell Development", aims to elucidate the molecular mechanisms involved in the regulation of these hormones in germ cell development and welcomes submissions of reviews, opinions, research articles and so on.

Prof. Dr. Kwan Sik Min
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Current Issues in Molecular Biology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • spermatogenesis
  • steroidogenesis
  • sex hormones
  • sex hormone receptors
  • gonadotropin
  • germ cell differentiation
  • androgen
  • luteinizing hormone
  • follicle-stimulating hormone
  • glycoprotein hormone receptors

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 1841 KiB  
Article
The N-Linked Glycosylation Asn191 and Asn199 Sites Are Controlled Differently Between PKA Signal Transduction and pEKR1/2 Activity in Equine Follicle-Stimulating Hormone Receptor
by Sung-Hoon Kim, Munkhzaya Byambaragchaa, Sei Hyen Park, Myung-Hum Park, Myung-Hwa Kang and Kwan-Sik Min
Curr. Issues Mol. Biol. 2025, 47(3), 168; https://doi.org/10.3390/cimb47030168 - 2 Mar 2025
Viewed by 507
Abstract
Equine follicle-stimulating hormone receptor (eFSHR) contains four extracellular N-linked glycosylation sites, which play important roles in agonist-induced signal transduction. Glycosylation regulates G protein-coupled receptor mechanisms by influencing folding, ligand binding, signaling, trafficking, and internalization. Here, we examined whether the glycosylated sites in eFSHR [...] Read more.
Equine follicle-stimulating hormone receptor (eFSHR) contains four extracellular N-linked glycosylation sites, which play important roles in agonist-induced signal transduction. Glycosylation regulates G protein-coupled receptor mechanisms by influencing folding, ligand binding, signaling, trafficking, and internalization. Here, we examined whether the glycosylated sites in eFSHR are necessary for cyclic adenosine monophosphate (cAMP) signal transduction and the phosphate extracellular signal-regulated kinase 1/2 (pERK1/2) response. We constructed mutants (N191Q, N199Q, N268Q, and N293Q) of the four N-linked glycosylation sites in eFSHR using site-directed mutagenesis. In wild-type (wt) eFSHR, the cAMP response gradually increased dose-dependently, displaying a strong response at the EC50 and Rmax. Two mutants (N191Q and N199Q) considerably decreased the cAMP response. Both EC50 values were approximately 0.46- and 0.44-fold compared to that of the eFSHR-wt, whereas Rmax levels were 0.29- and 0.45-fold compared to eFSHR-wt because of high-ligand treatment. Specifically, the EC50 and Rmax values in the N268Q mutant were increased 1.23- and 1.46-fold, respectively, by eFSHR-wt. pERK1/2 activity in eFSHR-wt cells was rapid, peaked within 5 min, consistently sustained until 15 min, and then sharply decreased. pERK1/2 activity in the N191Q mutant showed a pattern similar to that of the wild type, despite impaired cAMP responsiveness. The N199Q mutant showed low pERK1/2 activity at 5 and 15 min. Interestingly, pERK1/2 activity in the N268Q and N298Q mutants was similar to that of eFSHR-wt at 5 min, but neither mutant showed any signaling at 15 min, despite displaying high cAMP responsiveness. Overall, eFSHR N-linked glycosylation sites can signal to pERK1/2 via PKA and the other signals, dependent on G protein coupling and β-arrestin-dependent recruitment. Our results provide strong evidence for a new paradigm in which cAMP signaling is not activated, yet pERK1/2 cascade remains strongly induced. Full article
(This article belongs to the Special Issue Hormonal Regulation in Germ Cell Development)
Show Figures

Figure 1

Back to TopTop