cimb-logo

Journal Browser

Journal Browser

Molecular and Pharmacological Insights into Bioactive Compounds: Pathways to Therapeutics

A special issue of Current Issues in Molecular Biology (ISSN 1467-3045). This special issue belongs to the section "Molecular Pharmacology".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 2277

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
School of Pharmacy and Medical Sciences, University of Bradford, Richmond Rd, Bradford BD7 1DP, UK
Interests: drug discovery; translational; medicine; molecular; genetics; pharmacology; hypertension; TGFbeta
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Bioactive compounds that are synthetically modified or obtained from natural sources have significant potential for therapeutic applications. Understanding their molecular and pharmacological mechanisms is essential to promote the discovery and clinical application of new drugs. This Special Issue focuses on the complex biological pathways through which bioactive compounds exert their effects, including interactions with cell signaling networks, epigenetic modifications, metabolic reprogramming, and immune modulation. It highlights innovative research on the role of bioactive compounds in combating diseases such as infectious diseases, cancer, neurodegenerative metabolic, and genetic and cardiovascular disorders. We welcome studies exploring mechanisms of drug resistance and new therapeutic strategies.

We invite original research articles and reviews that elucidate the molecular basis, efficacy, and therapeutic potential of bioactive compounds.

Dr. Mosharraf Sarker
Dr. Talat Nasim
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Current Issues in Molecular Biology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioactive compounds
  • natural products
  • drug discovery
  • pharmacology
  • therapeutic pathways
  • molecular mechanisms
  • signal transduction
  • medicinal chemistry
  • target identification

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 11969 KB  
Article
Regulation of TGF-β and BMP Signaling by Natural Triterpene Compounds in Pulmonary Arterial Hypertension (PAH)
by Sila Ozlem Sener, Sabita Shaha, Saltan Gülçin İşcan, Ufuk Ozgen, Merve Yuzbasioglu Baran, Aleyna Nalcaoğlu and Md Talat Nasim
Curr. Issues Mol. Biol. 2025, 47(11), 939; https://doi.org/10.3390/cimb47110939 - 12 Nov 2025
Viewed by 622
Abstract
Pulmonary arterial hypertension (PAH) is a devastating cardiovascular disorder caused by right heart failure leading to premature death. The TGFBR2 and BMPR-II receptors, which are members of the TGF-β receptor family, are considered promising targets for developing novel drugs in PAH. Lupeol and [...] Read more.
Pulmonary arterial hypertension (PAH) is a devastating cardiovascular disorder caused by right heart failure leading to premature death. The TGFBR2 and BMPR-II receptors, which are members of the TGF-β receptor family, are considered promising targets for developing novel drugs in PAH. Lupeol and ψ-taraxasterol, naturally occurring triterpene molecules with proven anti-inflammatory, anti-cancer, and cardioprotective activities, hold considerable potential in the treatment of PAH. Hence, the present study aimed to evaluate the impacts of lupeol and ψ-taraxasterol isolated from Cirsium sintenisii Freyn on the TGF-β and BMP pathways, aiming to determine their therapeutic values in PAH. The effects of the compounds were extensively investigated using both in silico and wet lab experiments, including reporter assays, RT-PCR/QPCR, Western blots, and cell proliferations assays. Both lupeol and ψ-taraxasterol demonstrated interactions with the majority of components of these signaling pathways, including the TGFBR2 and BMPR-II receptors, suggesting that both compounds were capable of modulating the BMP and TGF-β pathways. Data derived from reporter assays, RT-PCR/QPCR, and Western blots demonstrated that lupeol and ψ-taraxasterol inhibited the TGF-β signaling pathway by reducing the phosphorylation of the SMAD3 protein and the expression of pai-1 transcripts. Additionally, ψ-taraxasterol enhanced BMP signaling via regulating the phosphorylation of SMAD1/5 proteins and upregulated the expression of id-1 transcripts. Finally, lupeol and ψ-taraxasterol inhibited abnormal proliferation of mutant-type (bmpr2R899X+/-) PAMSCs stimulated with the TGF-β1 ligand with no discernible effects on wild-type cells. This is the first comprehensive report outlining the potential therapeutic effects of lupeol and ψ-taraxasterol in PAH, which may have immediate experimental and clinical applications not only in PAH but also other BMP- and TGF-β-associated disorders. Full article
Show Figures

Figure 1

12 pages, 1832 KB  
Article
Increased Brain Glutathione Levels by Intranasal Insulin Administration
by Taisuke Kawashima, Wattanaporn Bhadhprasit, Nobuko Matsumura, Chisato Kinoshita and Koji Aoyama
Curr. Issues Mol. Biol. 2025, 47(4), 284; https://doi.org/10.3390/cimb47040284 - 17 Apr 2025
Viewed by 1280
Abstract
Background: This paper investigates the effect of intranasal insulin administration on brain glutathione (GSH) levels and elucidates the potential mechanism by which insulin enhances antioxidant defenses in the brain. Methods: C57BL/6J mice were intranasally administered insulin (2 IU/day) or saline for 7 days. [...] Read more.
Background: This paper investigates the effect of intranasal insulin administration on brain glutathione (GSH) levels and elucidates the potential mechanism by which insulin enhances antioxidant defenses in the brain. Methods: C57BL/6J mice were intranasally administered insulin (2 IU/day) or saline for 7 days. GSH levels were measured in the brain and liver. Blood glucose concentrations and daily food intake were also monitored. Protein levels of excitatory amino acid carrier-1 (EAAC1), its interaction with glutamate transport-associated protein 3-18(GTRAP3-18), and activated AMP-activated protein kinase (AMPK) were assessed. Results: Insulin-treated mice exhibited significantly higher GSH levels in the hippocampus and midbrain compared to saline-treated controls, while no significant differences were found in liver GSH levels, blood glucose concentrations, or food intake. EAAC1 expression increased in both the cytosolic and plasma membrane fractions of insulin-treated mouse brains. Furthermore, the interaction between EAAC1 and its negative regulator, GTRAP3-18, along with activated AMPK levels, was reduced in insulin-treated mice. Conclusions: Intranasal insulin administration enhances brain GSH levels through a mechanism involving EAAC1 upregulation and reduced AMPK activation. These findings suggest that intranasal insulin could be a promising strategy for enhancing antioxidant defenses against neurodegeneration in the brain. Full article
Show Figures

Figure 1

Back to TopTop