Cell Biology: State-of-the-Art and Perspectives in Germany

A special issue of Cells (ISSN 2073-4409).

Deadline for manuscript submissions: closed (31 May 2021) | Viewed by 11505

Special Issue Editor


E-Mail Website
Guest Editor
Division of Medical Biology, Carl Gustav Carus School of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
Interests: angiogenesis; cadherins; cancer cell biology; cell adhesion; endothelial cell biology; VEGF
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to provide a comprehensive overview of state-of-the-art of cell biology in Germany. We invite research papers that will consolidate our understanding in this area. The Special Issue will publish full research articles and comprehensive reviews. Potential topics include but are not limited to the following research areas:

  • OMICS: transcriptomics, genomics, proteomics, metabolomics, glycomics,
  • lipidomics, interactomics, fluxomics, and biomics;
  • Cell structure: organelles, cytoskeleton, cell membrane, capsule,
  • flagella, etc.;
  • Cell physiology: cell growth, metabolism, protein synthesis, division,
  • movement of proteins, active/passive transport, intra- and extracellular
  • signaling, adhesion, DNA repair, etc.;
  • Cell movement and motility;
  • Autophagy;
  • Apoptosis;
  • Cell aging;
  • Cell techniques: cell and tissue culture, isolation and fractionation
  • of cells, immunocytochemistry (ICC), in situ hybridization (ISH),
  • transfection, and optogenetics;
  • Cell growth and differentiation;
  • Hematopoiesis and stem cells;
  • Cancer stem cells;
  • Genetic disorders;
  • CAR-T cell research.

Prof. Georg Breier
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cells is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 2505 KiB  
Article
Monocyte Maturation Mediators Upregulate CD83, ICAM-1 and MHC Class 1 Expression on Ewing’s Sarcoma, Enhancing T Cell Cytotoxicity
by Emilie Biele, Sebastian J. Schober, Carolin Prexler, Melanie Thiede, Kristina von Heyking, Hendrik Gassmann, Jennifer Eck, Busheng Xue, Stefan Burdach and Uwe Thiel
Cells 2021, 10(11), 3070; https://doi.org/10.3390/cells10113070 - 08 Nov 2021
Cited by 3 | Viewed by 2030
Abstract
Ewing’s sarcoma (EwS) is a pediatric solid tumor entity with low somatic mutational burden and a low rate of tumor-infiltrating T cells, indicating a low extent of immunogenicity. In EwS, immunogenicity may furthermore be significantly diminished by a predominantly M2 macrophage driven pro-tumorigenic [...] Read more.
Ewing’s sarcoma (EwS) is a pediatric solid tumor entity with low somatic mutational burden and a low rate of tumor-infiltrating T cells, indicating a low extent of immunogenicity. In EwS, immunogenicity may furthermore be significantly diminished by a predominantly M2 macrophage driven pro-tumorigenic tumor microenvironment. In the past, we demonstrated that CHM1319-specific TCR-transgenic T cells are able to control EwS growth in a preclinical mouse model as well as in a patient with metastatic disease. However, new adjuvant techniques to induce long lasting and curative CHM1319-specific TCR-transgenic T cell-mediated anti-tumor responses are needed. In this work, we sought to identify a technique to improve the cytotoxic effect of CHM1319-specific TCR-transgenic T cell by altering the immunogenic cell surface marker expression on EwS cell lines using different cytokines. We demonstrate that TNF, IL-6, IL-1β and PGE2 cause pro-immunogenic CD83, MHC class I and II as well as ICAM-1 upregulation in EwS cell lines. This observation was associated with significantly improved recognition and killing of the tumor cells by EwS-specific CHM1319/HLA-A*02:01-restricted TCR-transgenic T cells. Conclusively, we demonstrate that the induction of an inflammatory signature renders EwS more susceptible to adoptive T cell therapy. TNF, which is upregulated during inflammatory processes, is of particular translational interest as its secretion may be induced in the patients e.g., by irradiation and hyperthermia in the clinical setting. In future clinical protocols, this finding may be important to identify appropriate conditioning regimens as well as point of time for adoptive T cell-based immunotherapy in EwS patients. Full article
(This article belongs to the Special Issue Cell Biology: State-of-the-Art and Perspectives in Germany)
Show Figures

Figure 1

20 pages, 20773 KiB  
Article
RGS5 Attenuates Baseline Activity of ERK1/2 and Promotes Growth Arrest of Vascular Smooth Muscle Cells
by Eda Demirel, Caroline Arnold, Jaspal Garg, Marius Andreas Jäger, Carsten Sticht, Rui Li, Hanna Kuk, Nina Wettschureck, Markus Hecker and Thomas Korff
Cells 2021, 10(7), 1748; https://doi.org/10.3390/cells10071748 - 11 Jul 2021
Cited by 5 | Viewed by 2905
Abstract
The regulator of G-protein signaling 5 (RGS5) acts as an inhibitor of Gαq/11 and Gαi/o activity in vascular smooth muscle cells (VSMCs), which regulate arterial tone and blood pressure. While RGS5 has been described as a crucial determinant regulating the VSMC [...] Read more.
The regulator of G-protein signaling 5 (RGS5) acts as an inhibitor of Gαq/11 and Gαi/o activity in vascular smooth muscle cells (VSMCs), which regulate arterial tone and blood pressure. While RGS5 has been described as a crucial determinant regulating the VSMC responses during various vascular remodeling processes, its regulatory features in resting VSMCs and its impact on their phenotype are still under debate and were subject of this study. While Rgs5 shows a variable expression in mouse arteries, neither global nor SMC-specific genetic ablation of Rgs5 affected the baseline blood pressure yet elevated the phosphorylation level of the MAP kinase ERK1/2. Comparable results were obtained with 3D cultured resting VSMCs. In contrast, overexpression of RGS5 in 2D-cultured proliferating VSMCs promoted their resting state as evidenced by microarray-based expression profiling and attenuated the activity of Akt- and MAP kinase-related signaling cascades. Moreover, RGS5 overexpression attenuated ERK1/2 phosphorylation, VSMC proliferation, and migration, which was mimicked by selectively inhibiting Gαi/o but not Gαq/11 activity. Collectively, the heterogeneous expression of Rgs5 suggests arterial blood vessel type-specific functions in mouse VSMCs. This comprises inhibition of acute agonist-induced Gαq/11/calcium release as well as the support of a resting VSMC phenotype with low ERK1/2 activity by suppressing the activity of Gαi/o. Full article
(This article belongs to the Special Issue Cell Biology: State-of-the-Art and Perspectives in Germany)
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 2149 KiB  
Review
The Manifold Cellular Functions of von Willebrand Factor
by Angelika Mojzisch and Maria A. Brehm
Cells 2021, 10(9), 2351; https://doi.org/10.3390/cells10092351 - 08 Sep 2021
Cited by 23 | Viewed by 5921
Abstract
The plasma glycoprotein von Willebrand factor (VWF) is exclusively synthesized in endothelial cells (ECs) and megakaryocytes, the precursor cells of platelets. Its primary function lies in hemostasis. However, VWF is much more than just a “fishing hook” for platelets and a transporter for [...] Read more.
The plasma glycoprotein von Willebrand factor (VWF) is exclusively synthesized in endothelial cells (ECs) and megakaryocytes, the precursor cells of platelets. Its primary function lies in hemostasis. However, VWF is much more than just a “fishing hook” for platelets and a transporter for coagulation factor VIII. VWF is a true multitasker when it comes to its many roles in cellular processes. In ECs, VWF coordinates the formation of Weibel–Palade bodies and guides several cargo proteins to these storage organelles, which control the release of hemostatic, inflammatory and angiogenic factors. Leukocytes employ VWF to assist their rolling on, adhesion to and passage through the endothelium. Vascular smooth muscle cell proliferation is supported by VWF, and it regulates angiogenesis. The life cycle of platelets is accompanied by VWF from their budding from megakaryocytes to adhesion, activation and aggregation until the end in apoptosis. Some tumor cells acquire the ability to produce VWF to promote metastasis and hide in a shell of VWF and platelets, and even the maturation of osteoclasts is regulated by VWF. This review summarizes the current knowledge on VWF’s versatile cellular functions and the resulting pathophysiological consequences of their dysregulation. Full article
(This article belongs to the Special Issue Cell Biology: State-of-the-Art and Perspectives in Germany)
Show Figures

Figure 1

Back to TopTop