Apoptosis in Cancers

A special issue of Cells (ISSN 2073-4409). This special issue belongs to the section "Cell Proliferation and Division".

Deadline for manuscript submissions: closed (31 August 2024) | Viewed by 4977

Special Issue Editor


E-Mail Website1 Website2
Guest Editor
Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
Interests: apoptosis; cell death; systems biology; anti-apoptotic pathways; network; caspase; small molecules
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We cordially invite you to submit your study to the special collection ‘Apoptosis in Cancers’.

We welcome original research and reviews on the following aspects, with a particular focus on the following:

  • Understanding networks of life/death decisions in a cancer cell;
  • Molecular mechanisms of apoptotic and anti-apoptotic pathways in cancer cells;
  • Pharmacological targeting of apoptosis in cancer;
  • Recent advances uncovering cellular functions of apoptosis in cancer;
  • Role of DNA damage mechanisms in cancer progression;
  • Mitochondrial control of apoptosis in cancer;
  • Role of death receptor-induced apoptosis in resistance;
  • Mechanisms of sensitivity and resistance in cancer cells;
  • Therapeutic strategies targeting key components of anti-apoptosis and apoptosis pathways.

Prof. Dr. Inna N. Lavrik
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cells is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • apoptosis
  • cancer
  • resistance
  • caspase
  • bcl-2
  • p53
  • death receptor
  • small molecules
  • pharmacological targeting

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 6233 KiB  
Article
Globospiramine from Voacanga globosa Exerts Robust Cytotoxic and Antiproliferative Activities on Cancer Cells by Inducing Caspase-Dependent Apoptosis in A549 Cells and Inhibiting MAPK14 (p38α): In Vitro and Computational Investigations
by Joe Anthony H. Manzano, Elian Angelo Abellanosa, Jose Paolo Aguilar, Simone Brogi, Chia-Hung Yen, Allan Patrick G. Macabeo and Nicanor Austriaco
Cells 2024, 13(9), 772; https://doi.org/10.3390/cells13090772 - 30 Apr 2024
Cited by 5 | Viewed by 2781
Abstract
Bisindole alkaloids are a source of inspiration for the design and discovery of new-generation anticancer agents. In this study, we investigated the cytotoxic and antiproliferative activities of three spirobisindole alkaloids from the traditional anticancer Philippine medicinal plant Voacanga globosa, along with their [...] Read more.
Bisindole alkaloids are a source of inspiration for the design and discovery of new-generation anticancer agents. In this study, we investigated the cytotoxic and antiproliferative activities of three spirobisindole alkaloids from the traditional anticancer Philippine medicinal plant Voacanga globosa, along with their mechanisms of action. Thus, the alkaloids globospiramine (1), deoxyvobtusine (2), and vobtusine lactone (3) showed in vitro cytotoxicity and antiproliferative activities against the tested cell lines (L929, KB3.1, A431, MCF-7, A549, PC-3, and SKOV-3) using MTT and CellTiter-Blue assays. Globospiramine (1) was also screened against a panel of breast cancer cell lines using the sulforhodamine B (SRB) assay and showed moderate cytotoxicity. It also promoted the activation of apoptotic effector caspases 3 and 7 using Caspase–Glo 3/7 and CellEvent-3/7 apoptosis assays. Increased expressions of cleaved caspase 3 and PARP in A549 cells treated with 1 were also observed. Apoptotic activity was also confirmed when globospiramine (1) failed to promote the rapid loss of membrane integrity according to the HeLa cell membrane permeability assay. Network pharmacology analysis, molecular docking, and molecular dynamics simulations identified MAPK14 (p38α), a pharmacological target leading to cancer cell apoptosis, as a putative target. Low toxicity risks and favorable drug-likeness were also predicted for 1. Overall, our study demonstrated the anticancer potentials and apoptotic mechanisms of globospiramine (1), validating the traditional medicinal use of Voacanga globosa. Full article
(This article belongs to the Special Issue Apoptosis in Cancers)
Show Figures

Figure 1

Review

Jump to: Research

36 pages, 1559 KiB  
Review
The Crosstalk of Apoptotic and Non-Apoptotic Signaling in CD95 System
by Kamil Seyrek, Johannes Espe, Elisabeth Reiss and Inna N. Lavrik
Cells 2024, 13(21), 1814; https://doi.org/10.3390/cells13211814 - 3 Nov 2024
Cited by 2 | Viewed by 1648
Abstract
The mechanisms of CD95 (Fas/APO-1)-mediated extrinsic apoptotic pathway in cancer cells have been extensively studied. The majority of human cells express CD95, but not all these cells can induce extrinsic apoptosis. Accumulating evidence has shown that CD95 is a multifunctional protein, and its [...] Read more.
The mechanisms of CD95 (Fas/APO-1)-mediated extrinsic apoptotic pathway in cancer cells have been extensively studied. The majority of human cells express CD95, but not all these cells can induce extrinsic apoptosis. Accumulating evidence has shown that CD95 is a multifunctional protein, and its stimulation can also elicit non-apoptotic or even survival signals. It has become clear that under certain cellular contexts, due to the various checkpoints, CD95 activation can trigger both apoptotic and non-apoptotic signals. The crosstalk of death and survival signals may occur at different levels of signal transduction. The strength of the CD95 stimulation, initial levels of anti-apoptotic proteins, and posttranslational modifications of the core DISC components have been proposed to be the most important factors in the life/death decisions at CD95. Successful therapeutic targeting of CD95 signaling pathways will require a better understanding of the crosstalk between CD95-induced apoptotic and cell survival pathways. In this review, in order to gain a systematic understanding of the crosstalk between CD95-mediated apoptosis and non-apoptotic signaling, we will discuss these issues in a step-by-step way. Full article
(This article belongs to the Special Issue Apoptosis in Cancers)
Show Figures

Figure 1

Back to TopTop