Recent Advances in Technology and Properties of Composite Materials

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Building Materials, and Repair & Renovation".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 549

Special Issue Editors


E-Mail Website
Guest Editor
Centre for Infrastructure Materials, Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BX, UK
Interests: digital fabrication; low carbon cements; carbon mineralization; rheology; waste recycling
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Civil Engineering, Tongji University, Shanghai 200092, China
Interests: structural engineering; progressive collapse; dynamics; RC structures; reliability

Special Issue Information

Dear Colleagues,

Recent technological advancements have propelled composite materials into novel realms of innovation and functionality. Composites, characterized by their composition of two or more constituent materials with markedly distinct physical or chemical properties, have garnered significant attention across diverse industries, spanning aerospace, automotive, construction, and biomedical fields. This heightened interest stems from the exceptional combination of properties that composites offer, encompassing high strength-to-weight ratios, customizable properties, resistance to corrosion, and flexibility in design. Over the past decade, notable strides have been achieved in enhancing the performance and characteristics of composite materials through pioneering manufacturing techniques, sophisticated characterization methodologies, and innovative material amalgamations. These advancements both broaden the application scope of composites and present opportunities to tackle critical challenges such as sustainability, cost-effectiveness, and scalability.

For our upcoming Special Issue, the authors are invited to submit exceptional papers focusing on various aspects within the scope of composite materials. These encompass manufacturing, design, validation, characterization/testing, performance assessment, application exploration, and sustainability evaluation. Additionally, we welcome submissions addressing the domains of functional and smart composite materials, innovative conceptualizations in composite materials, and studies pertaining to biomimetics and bio-based composites. We eagerly anticipate contributions that significantly advance our understanding and application of these diverse material systems.

Dr. Xiaodi Dai
Dr. Luchuan Ding
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ceramic matrix composite
  • metal matrix composite
  • reinforced concrete
  • glass fiber-reinforced concrete
  • biocomposite
  • carbon fiber-reinforced polymer

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 2721 KiB  
Article
Splitting Tensile Mechanical Performance and Mesoscopic Failure Mechanisms of High-Performance Concrete under 10-Year Corrosion from Salt Lake Brine
by Fang Wang, Hongfa Yu, Haiyan Ma, Ming Cheng, Jianbo Guo, Jinhua Zhang, Weifeng Liu, Weiquan Gao, Qinghua Tao and Juan Guo
Buildings 2024, 14(6), 1673; https://doi.org/10.3390/buildings14061673 - 5 Jun 2024
Viewed by 291
Abstract
In regions characterized by the challenging combination of brine corrosion in the salt lakes and river sand with alkali silica reaction (ASR) activity in areas of the Northwest, high-performance concrete (HPC) formulated with high-volume composite mineral admixtures as ASR suppression measures has been [...] Read more.
In regions characterized by the challenging combination of brine corrosion in the salt lakes and river sand with alkali silica reaction (ASR) activity in areas of the Northwest, high-performance concrete (HPC) formulated with high-volume composite mineral admixtures as ASR suppression measures has been preferred for civil engineering structures in the region. This study investigates the splitting tensile strength, corrosion products, microscopic structure characteristics, and mesoscopic mechanical mechanisms of splitting failure of such HPC under 10-year corrosion from salt lake brine. The relationship between mechanical properties and corrosion damage, as well as the characteristics of internal crack propagation paths and failure mechanisms of HPC under splitting load, are explored. The findings reveal that as the alkali content within HPC rises, corrosion damage intensifies, resulting in a reduction in splitting tensile strength. Moreover, a linear association between mechanical properties and corrosion damage is observed. Microscopic structural analysis and numerical simulation of the splitting failure process of HPC elucidate that while the substantial presence of mineral admixtures effectively suppresses the ASR risk associated with alkali-reactive aggregates in concrete, uneven ASR gel products persist. These discontinuous micro-fine interface cracks induced by the gel products and the cracks induced by the gel products around the selective alkali-active aggregate particles distributed in the local area are the initiation sources of mortar cracks in HPC splitting failure. In terms of the overall failure state observed during the concrete splitting process, mortar cracks manifest two distinct extension paths: along the coarse aggregate interface and directly through the aggregates themselves. Notably, a greater proportion of coarse aggregates are directly penetrated by mortar cracks, as opposed to the number of interface failures bypassing coarse aggregates. More importantly, the above work establishes a theoretical reference in three dimensions: macroscopic, mesoscopic, and microscopic, for studying concrete corrosion damage in complex environments such as salt lake brine corrosion and ASR inhibition. Full article
(This article belongs to the Special Issue Recent Advances in Technology and Properties of Composite Materials)
20 pages, 7900 KiB  
Article
Impact Toughness Analysis and Numerical Simulation of Coral Aggregate Concrete at Various Strength Grades: Experimental and Data Investigations
by Jianbo Guo, Hongfa Yu, Haiyan Ma, Sangchu Quan, Ting Liu and Xiaodi Dai
Buildings 2024, 14(6), 1605; https://doi.org/10.3390/buildings14061605 - 1 Jun 2024
Viewed by 105
Abstract
This paper comprehensively investigates the dynamic mechanical properties of concrete by employing a 75 mm diameter Split Hopkinson Pressure Bar (SHPB). To be detailed further, dynamic compression experiments are conducted on coral aggregate seawater concrete (CASC) to unveil the relationship between the toughness [...] Read more.
This paper comprehensively investigates the dynamic mechanical properties of concrete by employing a 75 mm diameter Split Hopkinson Pressure Bar (SHPB). To be detailed further, dynamic compression experiments are conducted on coral aggregate seawater concrete (CASC) to unveil the relationship between the toughness ratio, strain rate, and different strength grades. A three-dimensional random convex polyhedral aggregate mesoscopic model is also utilized to simulate the damage modes of concrete and its components under varying strain rates. Additionally, the impact of different aggregate volume rates on the damage modes of CASC is also studied. The results show that strain rate has a significant effect on CASC, and the strength grade influences both the damage mode and toughness index of the concrete. The growth rate of the toughness index exhibits a distinct change when the 28-day compressive strength of CASC ranges between 60 and 80 MPa, with three times an increment in the toughness index of high-strength CASC comparing to low-strength CASC undergoing high strain. The introduction of pre-peak and post-peak toughness highlights the lowest pre-to-post-peak toughness ratio at a strain rate of approximately 80 s−1, which indicates a shift in the concrete’s damage mode. Various damage modes of CASC are under dynamic impact and are consequently defined based on these findings. The LS-DYNA finite element software is employed to analyze the damage morphology of CASC at different strain rates, and the numerical simulation results align with the experimental observations. By comparing the numerical simulation results of different models with varying aggregate volume rates, it is reported that CASC’s failure mode is minimized at an aggregate volume rate of 20%. Full article
(This article belongs to the Special Issue Recent Advances in Technology and Properties of Composite Materials)
Show Figures

Figure 1

Back to TopTop