Investigations of Steel–Concrete Composite Structures Under Static and Dynamic Loading Conditions

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Building Structures".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 954

Special Issue Editors


E-Mail Website
Guest Editor
Department of Engineering and Technology, East Texas A&M University, Commerce, TX 75429, USA
Interests: innovative materials for concrete structures; green building; recycled concrete; rehabilitation of buildings and bridges; reinforced concrete structures; composite structures; finite element analysis; structural analysis; composite materials; material characterization
Special Issues, Collections and Topics in MDPI journals

E-Mail Website1 Website2
Guest Editor Assistant
Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
Interests: finite element analysis; static and dynamic analysis; steel and concrete structural design; green building; recycled concrete; rehabilitation of buildings and bridges; cold formed steel truss analysis; laminated glass panels

Special Issue Information

Dear Colleagues,

Steel–concrete composite beams are extensively used as highly effective structural elements in floor system construction. The combination of steel’s ductility in tension with concrete’s hardness and compressive strength results in an efficient load-bearing system. Strengthening these composite structures through external methods, such as post-tensioning, is regarded as an active technique, generating forces in the beam that counteract the straining actions. Additionally, fatigue loading caused by traffic is a critical factor affecting the performance of steel–concrete composite sections.

This Special Issue aims to explore the investigations of steel–concrete composite structures under static and dynamic loading conditions. It welcomes both comprehensive review articles and original research papers, with a focus on recent advancements in the design, behaviour, and applications of these structures in building construction.

Potential topics include, but are not limited to, the following:

  • Steel–concrete composite structures using advanced new materials;
  • Strengthening techniques of steel–concrete composite structures;
  • High-performance concrete decks;
  • Encased steel–concrete composite beams;
  • Cementitious materials in steel–concrete composite structures;
  • Green concrete in steel–concrete composite structures;
  • Steel–concrete composite structures under fatigue, impact, or static loadings;
  • Structural application of FRP in steel–concrete composite structures;
  • Experimental and finite element investigations of typical steel–concrete composite structures.

Dr. Ayman El-Zohairy
Guest Editor

Dr. Mohamed Elsawi Mahmoud
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fiber-reinforced polymers
  • rubberized concrete
  • composite structures
  • reinforced concrete decks
  • finite Element analysis
  • experimental investigations
  • cementitious materials
  • high-performance concrete
  • steel–concrete composite beams
  • strengthening techniques
  • fatigue, impact, or static loadings

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 7100 KiB  
Article
The Effect of Industrial and Recycled Steel Fibers on the Behavior of Rubberized RC Columns Under Axial Loading
by Hasan A. Alasmari, Ibrahim A. Sharaky, Ahmed S. Elamary and Ayman El-Zohairy
Buildings 2025, 15(10), 1616; https://doi.org/10.3390/buildings15101616 - 11 May 2025
Viewed by 320
Abstract
The use of recycled rubber particles, in the form of crumb rubber (CR), in concrete is gaining momentum due to its environmental benefits and potential for enhancing ductility. However, the strength degradation associated with CR incorporation remains a concern. This study investigates the [...] Read more.
The use of recycled rubber particles, in the form of crumb rubber (CR), in concrete is gaining momentum due to its environmental benefits and potential for enhancing ductility. However, the strength degradation associated with CR incorporation remains a concern. This study investigates the compressive and axial behavior of reinforced concrete columns incorporating CR and hybrid steel fibers, comprising recycled steel fibers (RSFs) and copper-coated micro steel fibers (MSFs). Sixteen circular columns with varying CR contents (0–20%) and a constant fiber dosage (0.7% RSF and 0.3% MSF by volume) were cast and tested under axial compression. The results showed that CR reduced compressive strength, while the addition of hybrid fibers significantly improved strength, ductility, and energy absorption. Columns with up to 8% CR and fibers demonstrated comparable or superior load-bearing capacity to conventional concrete. Finite element modeling using ABAQUS software (Version 6.9) validated the experimental results, with numerical predictions closely matching load–displacement behavior and failure modes. This study highlights the potential of using CR and hybrid steel fibers in structural concrete to promote sustainability without compromising performance. Full article
Show Figures

Figure 1

18 pages, 4292 KiB  
Article
Using Near-Surface-Mounted Small-Diameter Steel Wires to Improve Construction Efficiency in Strengthening Substandard Lapped Spliced Reinforced Concrete Beams
by Sabry Fayed, Mohamed Ghalla, Ehab A. Mlybari, Rabeea W. Bazuhair, Emrah Madenci and Yasin Onuralp Özkılıç
Buildings 2025, 15(6), 957; https://doi.org/10.3390/buildings15060957 - 18 Mar 2025
Viewed by 218
Abstract
Strengthening lapped spliced reinforced concrete (RC) beams using tiny-diameter steel wires as near-surface-mounted (NSM) rods has not been carried out previously. Thus, the purpose of this work is to examine the behavior of RC beams with insufficient lap splices that are strengthened by [...] Read more.
Strengthening lapped spliced reinforced concrete (RC) beams using tiny-diameter steel wires as near-surface-mounted (NSM) rods has not been carried out previously. Thus, the purpose of this work is to examine the behavior of RC beams with insufficient lap splices that are strengthened by NSM steel wires with different schemes to improve durability, efficiency, and effectiveness. At the middle of the beam, a splice length equal to 25 times the diameter of the rebar was used to join two tension bars. Many different schemes were implemented in strengthening the splice region, such as attaching longitudinal wires to the sides and/or bottom of the beam in different quantities with/without end anchorage, placing perpendicular and inclined U-shaped wires at the splice region in different quantities, and implementing a network of intersecting and opposite wires in two different directions. The effect of variables on the behavior of strengthened beams was studied. The findings proved that when the longitudinal wire reinforcement-to-lapped rebars area ratio was 9.4%, 18.7%, and 28%, the ultimate load of the beams was improved by 15.71%, 71.43%, and 104.57%, respectively. When the transverse U-shaped wire reinforcement ratio was 0.036, 0.051, 0.064, 0.075, and 0.150, the ultimate load of the beams was improved by 3.7%, 20%, 31.4%, 50%, and 80%, respectively, and the ultimate deflection was enhanced by 2%, 32%, 19%, 67%, and 62.4% compared to the unstrengthened beam. Full article
Show Figures

Figure 1

Back to TopTop