The Effect of Industrial and Recycled Steel Fibers on the Behavior of Rubberized RC Columns Under Axial Loading
Abstract
1. Introduction
2. Experimental Program
2.1. Materials
2.2. Concrete Mixture Proportioning
2.3. Preparation of Structural Columns
2.4. Experimental Set-Up and Instrumentation
3. Experimental Results
3.1. Concrete Properties
3.1.1. Compressive Strength
3.1.2. Split Tensile Strength
3.2. Behavior of Tested Columns
3.3. Column Toughness
3.4. Load–Displacement Behavior
4. Finite Element Modeling
4.1. Material Modeling
4.2. Model and Boundary Conditions
4.3. FE Model Verification
5. Conclusions
- The addition of CR to concrete to substitute sand diminished the concrete’s compressive and tensile strengths, while the addition of hybrid fibers to the normal and RuC mixes generally enhanced their strength.
- The columns cast with RuC mixes experienced lower load capacities than those cast with normal concrete (C00). The incorporation of fibers into the columns’ concrete mixes reduces the CR effect on the columns’ capacity by enhancing their lateral and longitudinal deformation capacities.
- The columns cast with 1% hybrid fibers and CR content, ranging from 0 to 20%, had their capacity enhanced by 97 to 165.6% compared to C00. The column toughness increased as the CR increased, or when hybrid fibers were added.
- The FE model could predict the columns’ responses and capacities with good agreement with the experimental results, and helped to clarify the effect of the CR and hybrid fibers on the columns’ responses through the comparison of strain distribution along the columns’ heights.
- The incorporation of CR to columns could reduce the environmental impact of car tire waste. To minimize the CR’s effects on columns’ capacity, recycled steel tire fibers should be added to the concrete mixes, increasing the columns’ capacities at CR contents up to 12%. Moreover, the columns with CR and fibers failed in a more ductile manner compared to those cast with normal concrete.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ec | tangent modulus of elasticity |
Esec | secant modulus of elasticity |
f’c | specified concrete compressive strength |
n | material parameter |
n1 | modified material parameter in the ascending branch |
n2 | modified material parameter in the descending branch |
εc | axial concrete strain |
ε’c | tensile strain corresponding to tensile strength |
εtc | cracking strain |
εtp | plastic strain |
εt | maximum tensile strain |
σc | concrete stress in general |
σt | concrete tensile stress in general |
References
- Thomas, B.S.; Gupta, R.C. A Comprehensive Review on the Applications of Waste Tire Rubber in Cement Concrete. Renew. Sustain. Energy Rev. 2016, 54, 1323–1333. [Google Scholar] [CrossRef]
- Candra, P.R.; Siswanto, H. Marshall Characteristics of Asphalt Concrete Wearing Course Using Crumb Rubber Modified of Motorcycle Tire Waste as Additive. Mater. Sci. Forum 2019, 961, 57–61. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, F. Mechanical Performance of Concrete-Encased Prismatic Girders with Corrugated Steel Webs. Eng. Struct. 2024, 303, 117559. [Google Scholar] [CrossRef]
- Ling, T.C.; Nor, H.M.; Lim, S.K. Using Recycled Waste Tyres in Concrete Paving Blocks. Proc. Inst. Civ. Eng.-Waste Resour. Manag. 2010, 163, 37–45. [Google Scholar] [CrossRef]
- Albano, C.; Camacho, N.; Reyes, J.; Feliu, J.L.; Hernández, M. Influence of Scrap Rubber Addition to Portland I Concrete Composites: Destructive and Non-Destructive Testing. Compos. Struct. 2005, 71, 439–446. [Google Scholar] [CrossRef]
- Aslani, F. Mechanical Properties of Waste Tire Rubber Concrete. J. Mater. Civ. Eng. 2016, 28, 04015152. [Google Scholar] [CrossRef]
- Azevedo, F.; Pacheco-Torgal, F.; Jesus, C.; Barroso de Aguiar, J.L.; Camões, A.F. Properties and Durability of HPC with Tyre Rubber Wastes. Constr. Build. Mater. 2012, 34, 186–191. [Google Scholar] [CrossRef]
- Sharaky, I.A. Effect of Particle Size of the Coated and Un-Coated Crumb Rubber on the Mechanical Properties and Water Absorption of Rubberized Concrete. Res. Eng. Struct. Mater. 2024, 10, 771–788. [Google Scholar] [CrossRef]
- Batayneh, M.K.; Marie, I.; Asi, I. Promoting the Use of Crumb Rubber Concrete in Developing Countries. Waste Manag. 2008, 28, 2171–2176. [Google Scholar] [CrossRef]
- Abu Bakar, B.H.; Noaman, A.T.; Md. Akil, H. Cumulative Effect of Crumb Rubber and Steel Fiber on the Flexural Toughness of Concrete. Eng. Technol. Appl. Sci. Res. 2017, 7, 1345–1352. [Google Scholar] [CrossRef]
- Khaloo, A.R.; Dehestani, M.; Rahmatabadi, P. Mechanical Properties of Concrete Containing a High Volume of Tire–Rubber Particles. Waste Manag. 2008, 28, 2472–2482. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Sharaky, I.A.; El Sayed, S.; Hassan, H.; Abdo, A. Effect of Rubberized Concrete Integrating Uncoated and Coated Crumb Rubber on the Flexural Behavior of the RC Beams Reinforced with Steel and GFRP Bars. Constr. Build. Mater. 2024, 426, 136192. [Google Scholar] [CrossRef]
- Abdo, A.; Sharaky, I.A.; Eisa, A.; Ahmed, S. Flexural Behavior of Steel/GFRP Reinforced Concrete Beams Having Layered Sections Integrated with Normal and Rubberized Concrete. Structures 2024, 70, 107633. [Google Scholar] [CrossRef]
- Sharaky, I.A.; Seleem, M.H.; Elamary, A.S. Minimizing the Crumb Rubber Effects on the Flexural Behaviour of the Layered RC Beams Cast Using Rubberized Concrete with or without Recycled Tire Steel Fibers. Constr. Build. Mater. 2023, 400, 132503. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Biolzi, L.; Cattaneo, S. Evaluation of Engineering Properties of Calcium Sulfoaluminate Cement-Based Concretes Reinforced with Different Types of Fibers. Materials 2019, 12, 2151. [Google Scholar] [CrossRef]
- Park, J.-J.; Yoo, D.-Y.; Park, G.-J.; Kim, S.-W. Feasibility of Reducing the Fiber Content in Ultra-High-Performance Fiber-Reinforced Concrete under Flexure. Materials 2017, 10, 118. [Google Scholar] [CrossRef]
- Song, P.; Hwang, S. Mechanical Properties of High-Strength Steel Fiber-Reinforced Concrete. Constr. Build. Mater. 2004, 18, 669–673. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wu, J.; Wang, J.G. Experimental and Numerical Analysis on Effect of Fibre Aspect Ratio on Mechanical Properties of SRFC. Constr. Build. Mater. 2010, 24, 559–565. [Google Scholar] [CrossRef]
- Saad, A.G.; Sakr, M.A.; Khalifa, T.M.; Darwish, E.A. Structural Performance of Concrete Reinforced with Crumb Rubber: A Review of Current Research. Iran. J. Sci. Technol. Trans. Civ. Eng. 2024. [Google Scholar] [CrossRef]
- Golpasand, G.B.; Farzam, M.; Shishvan, S.S. Behavior of Recycled Steel Fiber Reinforced Concrete under Uniaxial Cyclic Compression and Biaxial Tests. Constr. Build. Mater. 2020, 263, 120664. [Google Scholar] [CrossRef]
- Huo, J.; Bai, X.; Jiang, P.; Xue, Y.; Song, D.; Chu, J. Effect of Different Fiber Content on Mechanical Properties of Recycled Concrete. IOP Conf. Ser. Mater. Sci. Eng. 2018, 439, 042051. [Google Scholar] [CrossRef]
- Shi, X.; Park, P.; Rew, Y.; Huang, K.; Sim, C. Constitutive Behaviors of Steel Fiber Reinforced Concrete under Uniaxial Compression and Tension. Constr. Build. Mater. 2020, 233, 117316. [Google Scholar] [CrossRef]
- Salim, D.; Mohammed, H.; Abdulazeez, A.; Asaad, A.-H. Flexural Strength and Ductility of Ultra High-Performance Cement-Based Composites (UHP-CC). J. Appl. Eng. Sci. 2022, 20, 131–136. [Google Scholar] [CrossRef]
- Gong, J.; Ma, Y.; Fu, J.; Hu, J.; Ouyang, X.; Zhang, Z.; Wang, H. Utilization of Fibers in Ultra-High Performance Concrete: A Review. Compos. Part B Eng. 2022, 241, 109995. [Google Scholar] [CrossRef]
- Hammood, R.A.; Syed Mohsin, S.M. Effect Use of Steel Fiber on Mechanical Properties of Concrete Mixture. IOP Conf. Ser. Earth Environ. Sci. 2019, 365, 012007. [Google Scholar] [CrossRef]
- Ozkilic, Y.O.; Madenci, E.; Mansour, W.; Sharaky, I.A.; Fayed, S. Behavior of Self-Compacting Recycled Concrete Filled Aluminum Tubular Columns under Concentric Compressive Load.Pdf. Steel Compos. Struct. 2024, 51, 243–260. [Google Scholar] [CrossRef]
- Sharaky, I.A.; Elamary, A.S.; Alharthi, Y.M.; Abdo, A. Effect of Normal and Rubberized Concrete Properties on the Behavior of RC Columns Strengthened with EB CFRP Laminates and Welded Wire Mesh under Static Axial Loading. Polymers 2022, 14, 5351. [Google Scholar] [CrossRef]
- Alasmari, H. Influence of Crumb Rubber and Recycled Steel Fibers on Hybrid Layered Reinforced Concrete Columns under Compression Load. Eng. Technol. Appl. Sci. Res. 2024, 14, 13313–13318. [Google Scholar] [CrossRef]
- Wang, B.; Lv, H.; Gao, Y.; Tang, M.; Ding, N.; Zhao, X.; Zhao, H.; Hu, X. Experimental Study on Axial Compressive Performance of Recycled Steel Fiber Reinforced Concrete Short Columns with Steel Pipes. Buildings 2024, 14, 2498. [Google Scholar] [CrossRef]
- Available online: https://www.fosroc.com/product/show/conplast-Sp430 (accessed on 12 April 2025).
- ASTM C33/C33M-18; Standard Specification for Concrete Aggregates. ASTM International: West Conshohocken, PA, USA, 2003.
- ACI 211.1; Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211.1-91). American Concrete Institute: Farmington Hills, MI, USA, 2002.
- BS EN 12390-3:2009; Testing Hardened Concrete, Part 3: Compressive Strength of Test Specimens. British Standardisation Institute: London, UK, 2009.
- ASTM C496/C496M-17; Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2011.
- Wang, G.; Zhuang, Y.; Song, L.; He, Z.; Zhang, J.; Zhou, H. Mechanical Properties and Failure Mechanism of Fiber-Reinforced Concrete Materials: Effects of Fiber Type and Content. Constr. Build. Mater. 2025, 465, 140190. [Google Scholar] [CrossRef]
- Ma, J.; Yuan, H.; Zhang, J.; Zhang, P. Enhancing Concrete Performance: A Comprehensive Review of Hybrid Fiber Reinforced Concrete. Structures 2024, 64, 106560. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Faraj, R.H.; Hilal, N.; Mohammed, A.A.; Sherwani, A.F.H. Use of Recycled Fibers in Concrete Composites: A Systematic Comprehensive Review. Compos. Part B Eng. 2021, 215, 108769. [Google Scholar] [CrossRef]
- 192/C 192M; The American Society for Testing Materials Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. The American Society for Testing Materials: West Conshohocken, PA, USA, 2000.
- Marie, I. Thermal Conductivity of Hybrid Recycled Aggregate-Rubberized Concrete. Constr. Build. Mater. 2017, 133, 516–524. [Google Scholar] [CrossRef]
- Reda Taha, M.M.; El-Dieb, A.S.; Abd El-Wahab, M.A.; Abdel-Hameed, M.E. Mechanical, Fracture, and Microstructural Investigations of Rubber Concrete. J. Mater. Civ. Eng. 2008, 20, 640–649. [Google Scholar] [CrossRef]
- Rossli, S.; Ibrahim, I. Mechanical Properties of Recycled Steel Tire Fibres in Concrete. Fac. Civil Eng. 2012. [Google Scholar]
- Hibbitt, I. ABAQUS Theory Manual, User Manual and Example Manual; Version 6.9; Dassault Systèmes Simulia Corp: Providence, RI, USA, 2009. [Google Scholar]
- El-Mandouh, M.A.; Elsamak, G.; Rageh, B.O.; Hamoda, A.; Abdelazeem, F. Experimental and Numerical Investigation of One-Way Reinforced Concrete Slabs Using Various Strengthening Systems. Case Stud. Constr. Mater. 2023, 18, e01691. [Google Scholar] [CrossRef]
- Ahmed, S.; Sharaky, I.; Ibrahim, Y.; Abdo, A. Flexural Response of GFRP RC Beams Strengthened with Side and Bottom NSM GFRP Bars. Case Stud. Constr. Mater. 2023, 18, e01858. [Google Scholar] [CrossRef]
- Sharaky, I.; Elamary, A.; Alharthi, Y. Experimental and Numerical Investigation on the Flexural Performance of RC Slabs Strengthened with EB/NSM CFRP Reinforcement and Bonded Reinforced HSC Layers. Eng. Struct. 2023, 289, 116338. [Google Scholar] [CrossRef]
- Abdo, A.; Sharaky, I.; Ahmed, S. Shear Performance of Reinforced Concrete Beams Strengthened in Shear Using NSM Bars and Reinforced HSC Layers. Struct. Concr. 2023, 24, 7295–7313. [Google Scholar] [CrossRef]
- Carreira, C. Stress-Strain Relationship for Plain Concrete in Compression. ACI J. Proc. 1985, 82, 797–804. [Google Scholar] [CrossRef]
- Nataraja, M.C.; Dhang, N.; Gupta, A.P. Stress–Strain Curves for Steel-Fiber Reinforced Concrete under Compression. Cem. Concr. Compos. 1999, 21, 383–390. [Google Scholar] [CrossRef]
- Yuan, F.; Wei, W.; Hu, R. Shear Strengthening of Reinforced Concrete Beams with High-Strength Steel Wire and Engineered Cementitious Composites. Adv. Struct. Eng. 2022, 25, 158–170. [Google Scholar] [CrossRef]
- Seleem, M.; Megahed, F.; Badawy, A.; Sharaky, I. Performance of NSM and EB Methods on the Flexural Capacity of the RC Beams Strengthened with Reinforced HSC Layers. Structures 2023, 56, 104950. [Google Scholar] [CrossRef]
- Jahani, Y.; Baena, M.; Barris, C.; Torres, L.; Sena-Cruz, J. Effect of Fatigue Loading on Flexural Performance of NSM CFRP-Strengthened RC Beams under Different Service Temperatures. Eng. Struct. 2022, 273, 115119. [Google Scholar] [CrossRef]
- Sharaky, I.; Baena, M.; Barris, C.; Sallam, H.; Torres, L. Effect of Axial Stiffness of NSM FRP Reinforcement and Concrete Cover Confinement on Flexural Behaviour of Strengthened RC Beams: Experimental and Numerical Study. Eng. Struct. 2018, 173, 987–1001. [Google Scholar] [CrossRef]
- Ci, J.; Kong, L.; Ahmed, M.; Liang, Q.; Hamoda, A.; Chen, S.; Wu, C. Experimental and Numerical Studies of Axially Loaded Square Concrete-encased Concrete-filled Large-diameter Steel Tubular Short Columns. Struct. Concr. 2022, 23, 2748–2769. [Google Scholar] [CrossRef]
- Ci, J.; Ahmed, M.; Liang, Q.; Chen, S.; Chen, W.; Sennah, K.; Hamoda, A. Experimental and Numerical Investigations into the Behavior of Circular Concrete-Filled Double Steel Tubular Slender Columns. Eng. Struct. 2022, 267, 114644. [Google Scholar] [CrossRef]
- Ayough, P.; Ibrahim, Z.; Sulong, N.; Hsiao, P.; Elchalakani, M. Numerical Analysis of Square Concrete-Filled Double Skin Steel Tubular Columns with Rubberized Concrete. Structures 2021, 32, 1026–1047. [Google Scholar] [CrossRef]
- Yu, K.; Wang, Y.; Yu, J.; Xu, S. A Strain-Hardening Cementitious Composites with the Tensile Capacity up to 8%. Constr. Build. Mater. 2017, 137, 410–419. [Google Scholar] [CrossRef]
No. | Fiber Properties | MSF1 | MSF2 |
---|---|---|---|
1 | Shape | Straight | Straight |
2 | Length (mm) | 10 | 16 |
3 | Diameter (mm) | 0.35 | 0.35 |
4 | Aspect ratio | 28 | 45 |
5 | Tensile strength (MPa) | 2800 | 2800 |
6 | Young’s modulus (GPa) | 200 GPa | 200 GPa |
7 | Specific gravity | 7.9 | 7.9 |
Mix | CR | W/C | Sand | Basalt | WRSF (%) | MSF (%) | Water | Cement | SP430 |
---|---|---|---|---|---|---|---|---|---|
ID | (%) | (-) | (kg) | (kg) | (kg) | (kg) | (kg) | ||
R00 | 0 | 0.47 | 814 | 907 | - | - | 202 | 430 | 1.07 |
R04 | 4 | 0.47 | 800 | 907 | - | - | 202 | 430 | 1.5 |
R12 | 12 | 0.47 | 772 | 907 | - | - | 202 | 430 | 1.5 |
R20 | 20 | 0.47 | 745 | 907 | - | - | 202 | 430 | 1.5 |
R00F | 0 | 0.47 | 814 | 907 | 0.7 | 0.3 | 202 | 430 | 1.72 |
R04F | 4 | 0.47 | 800 | 907 | 0.7 | 0.3 | 202 | 430 | 1.72 |
R12F | 12 | 0.47 | 772 | 907 | 0.7 | 0.3 | 202 | 430 | 193 |
R20F | 20 | 0.47 | 800 | 907 | 0.7 | 0.3 | 202 | 430 | 2.15 |
Column | Column No. | Mix ID | CR % | RSF % | MSFs % | Test Parameters |
---|---|---|---|---|---|---|
ID | ||||||
C00 | 1 | R00 | Non | Non | Non | Control column |
2 | ||||||
C04 | 1 | R04 | 4.0 | Non | Non | CR content |
2 | ||||||
C12 | 1 | R12 | 12.0 | Non | Non | CR content |
2 | ||||||
C20 | 1 | R20 | 20.0 | Non | Non | CR content |
2 | ||||||
C00F | 1 | R00F | Non | 0.7 | 0.3 | Fibers |
2 | ||||||
C04F | 1 | R04F | 4.0 | 0.7 | 0.3 | CR content and fibers |
2 | ||||||
C12F | 1 | R12F | 12.0 | 0.7 | 0.3 | CR content and fibers |
2 | ||||||
C20F | 1 | R20F | 20.0 | 0.7 | 0.3 | CR Content and fibers |
2 |
Mix | CR | RSF | MSF % | fcu | fcuAv | µcu | ftu | ftu,Av | µtu |
---|---|---|---|---|---|---|---|---|---|
ID | % | % | MPa | MPa | % | MPa | MPa | % | |
R00 | 0 | 0 | 0 | 30.1 | 30.7 ± 0.5 | - | 3.6 | 3.1 ± 0.08 | - |
31.3 | 3.8 | ||||||||
30.7 | 3.7 | ||||||||
R04 | 4 | 0 | 0 | 26.9 | 26.5 ± 0.5 | 79.3 | 3.0 | 2.6 ± 0.12 | 86.5 |
26.7 | 3.3 | ||||||||
25.8 | 3.1 | ||||||||
R12 | 12 | 0 | 0 | 19.5 | 20.3 ± 1.2 | 60.8 | 2.9 | 2.1 ± 0.08 | 75.7 |
19.4 | 2.7 | ||||||||
22 | 2.8 | ||||||||
R20 | 20 | 0 | 0 | 16.9 | 17.3 ± 0.3 | 51.8 | 1.8 | 1.8 ± 0.08 | 48.6 |
17.4 | 1.7 | ||||||||
17.6 | 1.9 | ||||||||
R00F | 0 | 0.7 | 0.3 | 58.1 | 60.3 ± 1.8 | 180.5 | 4.1 | 4.2 ± 0.08 | 113.5 |
59.8 | 4.3 | ||||||||
62.4 | 4.2 | ||||||||
R04F | 4 | 0.7 | 0.3 | 41.9 | 42.6 ± 0.5 | 127.5 | 3.3 | 3.4 ± 0.08 | 91.9 |
43.2 | 3.4 | ||||||||
42.7 | 3.5 | ||||||||
R12F | 12 | 0.7 | 0.3 | 39 | 37.7 ± 1.0 | 112.9 | 3.1 | 3.2 ± 0.08 | 86.5 |
37.4 | 3.3 | ||||||||
36.7 | 3.2 | ||||||||
R20F | 20 | 0.7 | 0.3 | 28.3 | 28.3 ± 0.8 | 84.7 | 2.7 | 2.8 ± 0.08 | 75.7 |
27.8 | 2.9 | ||||||||
29.8 | 2.8 |
Group | Column | Pu | µu | Δ | T | K |
---|---|---|---|---|---|---|
ID | ID | kN | % | mm | (kN.mm) | (kN/mm) |
C00 | 1 | 978.4 | ||||
2 | 982.6 | |||||
Average | 980.5 ± 2.1 | - | 1.72 | 1113.1 | 918.7 | |
C04 | 1 | 895.7 | ||||
2 | 905.3 | |||||
Average | 900.5 ± 4.8 | 91.8 | 1.85 | 1110.6 | 945.7 | |
C12 | 1 | 768.4 | ||||
2 | 752.8 | |||||
Average | 760.6 ± 7.8 | 77.6 | 3.03 | 1544.1 | 535.7 | |
C20 | 1 | 719.5 | ||||
2 | 741.1 | |||||
Average | 730.3 ± 10.8 | 74.5 | 3.27 | 1600.0 | 591.1 | |
C00F | 1 | 1642.4 | ||||
2 | 1604.8 | |||||
Average | 1623.6 ± 18.8 | 165.6 | 1.91 | 2077.8 | 2251.0 | |
C04F | 1 | 1270.5 | ||||
2 | 1250.7 | |||||
Average | 1260.6 ± 9.9 | 128.6 | 1.71 | 1444.3 | 1470.0 | |
C12F | 1 | 1132.4 | ||||
2 | 1155.0 | |||||
Average | 1143.7 ± 11.3 | 116.6 | 1.72 | 1318.0 | 1465.4 | |
C20F | 1 | 941.6 | ||||
2 | 961.4 | |||||
Average | 951.5 ± 9.9 | 97.0 | 2.13 | 1357.9 | 850.8 |
Columns ID | Pu,exp. MPa | Pu,FE MPa | Pu,FE/Pu,exp × 100 % |
---|---|---|---|
C00 | 980.5 | 990.2 | 101.0 |
C04 | 900.5 | 906.9 | 100.7 |
C12 | 760.6 | 784.9 | 103.2 |
C20 | 730.3 | 738.5 | 101.1 |
C00F | 1623.6 | 1645.8 | 101.4 |
C04F | 1260.6 | 1275.1 | 101.2 |
C12F | 1143.7 | 1163.4 | 101.7 |
C20F | 951.5 | 960.7 | 101.0 |
Average | 101.4 | ||
Standard deviation | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alasmari, H.A.; Sharaky, I.A.; Elamary, A.S.; El-Zohairy, A. The Effect of Industrial and Recycled Steel Fibers on the Behavior of Rubberized RC Columns Under Axial Loading. Buildings 2025, 15, 1616. https://doi.org/10.3390/buildings15101616
Alasmari HA, Sharaky IA, Elamary AS, El-Zohairy A. The Effect of Industrial and Recycled Steel Fibers on the Behavior of Rubberized RC Columns Under Axial Loading. Buildings. 2025; 15(10):1616. https://doi.org/10.3390/buildings15101616
Chicago/Turabian StyleAlasmari, Hasan A., Ibrahim A. Sharaky, Ahmed S. Elamary, and Ayman El-Zohairy. 2025. "The Effect of Industrial and Recycled Steel Fibers on the Behavior of Rubberized RC Columns Under Axial Loading" Buildings 15, no. 10: 1616. https://doi.org/10.3390/buildings15101616
APA StyleAlasmari, H. A., Sharaky, I. A., Elamary, A. S., & El-Zohairy, A. (2025). The Effect of Industrial and Recycled Steel Fibers on the Behavior of Rubberized RC Columns Under Axial Loading. Buildings, 15(10), 1616. https://doi.org/10.3390/buildings15101616