Metal–Organic Framework-Based Nanostructures for Electrochemical Sensing of Sweat Biomarkers
Abstract
:1. Introduction
2. Sweat Biomarkers
3. Electrochemical Detection of Sweat Biomarkers
4. Fabrication and Characterization of MOFs and Their Nanostructures
5. MOFs for Electrochemical Detection of Sweat Biomarkers
6. MOF-Based NCs for Electrochemical Detection of Sweat Biomarkers
6.1. Cu-MOF
6.1.1. Cu-MOF Nanostructures
6.1.2. Cu-MOF/Pt NPs
6.1.3. Cu-CAT) Nanowires
6.1.4. Cu-MOF Nanosheets
6.2. Ni-MOF Nanorods
6.3. NiCo-MOF/CNTs
6.4. Zeolitic Imidazolate Framework (ZIF)
6.4.1. ZIF-8/Au NPs
6.4.2. ZIF-8/Ag NPs
6.4.3. ZIF-8 NPs/GO
6.4.4. ZIF-67-Derived NiCo
6.5. Zn-TCPP Nanosheets/MWCNTs
7. MOF NCs as Promising Electrode Modifiers for Detecting Sweat Biomarkers
7.1. Two-Dimensional Co-MOF Nanostructures
7.2. Cu-MOF
7.2.1. Cu-MOF Nanostructures
7.2.2. Cu-MOF/Ni NPs
7.2.3. Cu-MOF/Pt NPs
7.2.4. CuCo Nanostructures
7.2.5. CuCo-MOF/Cu NPs
7.2.6. CuCo-MOF/CuO NPs
7.3. MnCO-MOF Nanostructures
7.4. Nb-MOF Nanostructures
7.5. Ni-MOF
7.5.1. Ni-MOF Nanostructures
7.5.2. Ni-MOF NPs
7.5.3. Ni-MOF/Au NPs
7.5.4. Ni-MOF/CNTs
7.5.5. Ni2P/C NPs
7.5.6. Ni-P NPs
7.6. NiCo-MOF/Au NPs
7.7. NiMn-MOF Nanostructures
7.8. ZIF
7.8.1. ZIF Nanoporous Carbon
7.8.2. ZIF/Pt NPs
7.8.3. ZIF/ZnO NPs
7.8.4. ZIF-67 Derived NiCo LDH Nanosheets
7.9. Zn-MOF Nanoflower
7.10. Zr-MOF (Porous Carbon-ZrO2 NPs)
8. Perspective, Challenges, and Future Limitations
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bhardwaj, A.; Singh, A.K. Biogenic synthesis, characterization and photocatalytic activity of cerium nanoparticles for treatment of dyes contaminated water. Biocatal. Agric. Biotechnol. 2024, 57, 103075. [Google Scholar] [CrossRef]
- Özbek, O.; Altunoluk, O.C. Recent advances in nanoparticle–based potentiometric sensors. Adv. Sens. Energy Mater. 2023, 3, 100087. [Google Scholar] [CrossRef]
- Rao, G.N.M.; Vakkalagadda, M. A review on synthesis, characterization and applications of nanoparticles in polymer nanocomposites. Mater. Today Proc. 2023, 98, 68–80. [Google Scholar]
- Zahran, M.; Khalifa, Z.; Zahran, M.A.; Azzem, M.A. Abiotic Sensor for Electrochemical Determination of Chlorpyrifos in Natural Water Based on the Inhibition of Silver Nanoparticles Oxidation. Microchem. J. 2021, 165, 106173. [Google Scholar] [CrossRef]
- Zahran, M.; Khalifa, Z.; Zahran, M.A.; Azzem, M.A. Gum Arabic-capped silver nanoparticles for electrochemical amplification sensing of methylene blue in river water. Electrochim. Acta 2021, 394, 139152. [Google Scholar] [CrossRef]
- Zahran, M.; Khalifa, Z.; Zahran, M.A.-H.; Abdel Azzem, M. Dissolved Organic Matter-Capped Silver Nanoparticles for Electrochemical Aggregation Sensing of Atrazine in Aqueous Systems. ACS Appl. Nano Mater. 2020, 3, 3868–3875. [Google Scholar] [CrossRef]
- Zahran, M.; Khalifa, Z.; Zahran, M.A.-H.; Azzem, M.A. Natural latex-capped silver nanoparticles for two-way electrochemical displacement sensing of Eriochrome black T. Electrochim. Acta 2020, 356, 136825. [Google Scholar] [CrossRef]
- Murtala, N.; Rahman, R.; Said, K.A.M.B.; Mannan, M.A.; Patwary, A.M. A review of nanoparticle synthesis methods, classifications, applications, and characterization. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100900. [Google Scholar]
- Silverio, A.A.; Chung, W.-Y.; Tsai, V.F.; Cheng, C. Multi-parameter readout chip for interfacing with amperometric, potentiometric and impedometric sensors for wearable and point-of-care test applications. Microelectron. J. 2020, 100, 104769. [Google Scholar] [CrossRef]
- Han, E.; Pan, Y.; Li, L.; Cai, J. Bisphenol A detection based on nano gold-doped molecular imprinting electrochemical sensor with enhanced sensitivity. Food Chem. 2023, 426, 136608. [Google Scholar] [CrossRef]
- Zahran, M.; Azzem, M.A.; El-Attar, M. Red gum-capped gold nanoparticles for electrochemical sensing of bromocresol purple in water. Mater. Adv. 2024, 5, 1683–1690. [Google Scholar] [CrossRef]
- Zhou, C.; Feng, J.; Tian, Y.; Wu, Y.; He, Q.; Li, G.; Liu, J. Non-enzymatic electrochemical sensors based on nanomaterials for detection of organophosphorus pesticide residues. Environ. Sci. Adv. 2023, 2, 933–956. [Google Scholar] [CrossRef]
- Zahran, M. Carbohydrate polymer-supported metal and metal oxide nanoparticles for constructing electrochemical sensors. Mater. Adv. 2024, 5, 68–82. [Google Scholar] [CrossRef]
- Zahran, M.M.; Khalifa, Z.; Zahran, M.; Azzem, M.A. Recent advances in silver nanoparticle-based electrochemical sensors for determining organic pollutants in water: A review. Mater. Adv. 2021, 2, 7350–7365. [Google Scholar] [CrossRef]
- Shi, Y.; Zou, Y.; Khan, M.S.; Zhang, M.; Yan, J.; Zheng, X.; Wang, W.; Xie, Z. Metal–organic framework-derived photoelectrochemical sensors: Structural design and biosensing technology. J. Mater. Chem. C 2023, 11, 3692–3709. [Google Scholar] [CrossRef]
- Li, X.; Chi, F.; Huang, Y. A convenient, economical and excellent-yield method for the preparations of zeolite imidazolate frameworks (ZIFs) and the applications in environmental purification. J. Phys. Chem. Solids 2024, 188, 111895. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, W.; Wang, C.; Zhao, S.; Hao, Z.; Huang, X.; Miao, K.; Kang, X. MOF-Derived Fe2CoSe4@NC and Fe2NiSe4@NC Composite Anode Materials towards High-Performance Na-Ion Storage. Inorganics 2024, 12, 165. [Google Scholar] [CrossRef]
- El-Shamy, O.A.; Siddiqui, M.R.; Mele, G.; Mohsen, Q.; Alhajeri, M.M.; Deyab, M. Synthesis, Characterization and Application of CNTs@Co-MOF and FCNTs@Co-MOF as Superior Supercapacitor: Experimental and Theoretical studies. J. Mol. Struct. 2024, 1321, 140161. [Google Scholar] [CrossRef]
- Ye, R.-H.; Chen, J.-Y.; Huang, D.-H.; Wang, Y.-J.; Chen, S. Electrochemical sensor based on glassy-carbon electrode modified with dual-ligand EC-MOFs supported on rGO for BPA. Biosensors 2022, 12, 367. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; Ye, B. An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs). J. Alloys Compd. 2018, 767, 651–656. [Google Scholar] [CrossRef]
- Ma, Y.-F.; Zhang, M.-L.; Lu, X.-Y.; Ren, Y.-X.; Yang, X.-G. Artificial light harvesting system of CM6@Zn-MOF nanosheets with highly enhanced photoelectric performance. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 325, 125152. [Google Scholar] [CrossRef] [PubMed]
- Cheraghi, H.; Jalali, F.; Sheikhi, S. Zirconium oxide-porous carbon derived from metal-organic frameworks as a new sensing platform: Application to simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. J. Iran. Chem. Soc. 2024, 21, 511–524. [Google Scholar] [CrossRef]
- Vikal, A.; Maurya, R.; Patel, P.; Paliwal, S.R.; Narang, R.K.; Gupta, G.D.; Kurmi, B.D. Exploring metal-organic frameworks (MOFs) in drug delivery: A concise overview of synthesis approaches, versatile applications, and current challenges. Appl. Mater. Today 2024, 41, 102443. [Google Scholar] [CrossRef]
- Xie, N.; Zhang, X.; Guo, Y.; Guo, R.; Wang, Y.; Sun, Z.; Li, H.; Jia, H.; Jiang, T.; Gao, J. Hollow Mn/Co-LDH produced by in-situ etching-growth of MOF: Nanoreactant for steady chemical immobilization of antimony. J. Taiwan Inst. Chem. Eng. 2021, 127, 197–207. [Google Scholar] [CrossRef]
- Fdez-Sanromán, A.; Rosales, E.; Pazos, M.; Sanromán, A. One-pot synthesis of bimetallic Fe–Cu metal–organic frameworks composite for the elimination of organic pollutants via peroxymonosulphate activation. Environ. Sci. Pollut. Res. 2023, 1–16. [Google Scholar] [CrossRef]
- Gupta, M.; Tyagi, S.; Kumari, N. Electrochemical performance of hybrid spinel ferrite/carbon (NiFe2O4/C) nanocomposite derived from metal organic frameworks (MOF) as electrode material for supercapacitor application. J. Solid State Electrochem. 2024, 28, 169–180. [Google Scholar] [CrossRef]
- Ramu, S.; Kainthla, I.; Chandrappa, L.; Shivanna, J.M.; Kumaran, B.; Balakrishna, R.G. Recent advances in metal organic frameworks–based magnetic nanomaterials for waste water treatment. Environ. Sci. Pollut. Res. 2024, 31, 167–190. [Google Scholar] [CrossRef]
- Salunkhe, A.D.; Pawar, P.S.; Pagare, P.K.; Torane, A.P. Facile solvothermal synthesis of Ni-Co MOF/rGO nanoflakes for high-performance asymmetric supercapacitor. Electrochim. Acta 2024, 477, 143745. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, P.; Liang, Z.; Zhong, W.; Ma, Q. A novel Cu-MOFs nanosheet/BiVO4 nanorod-based ECL sensor for colorectal cancer diagnosis. Talanta 2024, 266, 124952. [Google Scholar] [CrossRef]
- Jia, Y.; Yan, B. Visual ratiometric fluorescence sensing of L-lactate in sweat by Eu-MOF and the design of logic devices. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 297, 122764. [Google Scholar] [CrossRef]
- Tang, M.-H.; Shi, Y.; Jiang, X.-L.; Xu, H.; Ma, Y.; Zhao, B. A high sensitivity luminescent sensor for the stress biomarker cortisol using four-fold interpenetrated europium–organic frameworks integrated with logic gates. J. Mater. Chem. C 2021, 9, 9643–9649. [Google Scholar] [CrossRef]
- Akmal, S.A.; Khalid, M.; Ahmad, M.S.; Shahid, M.; Ahmad, M. Interwoven Architectural Complexity in Ni (II) Ion-Based 3D MOF Using Bipyridine and Tetrabenzenecarboxylic Acid: Adsorption Insights in Highly Efficient Iodine and Cationic Dye Capture. Cryst. Growth Des. 2024, 24, 7173–7193. [Google Scholar] [CrossRef]
- Wang, X.; Ma, T.; Ma, J.-G.; Cheng, P. Integration of devices based on metal–organic frameworks: A promising platform for chemical sensing. Coord. Chem. Rev. 2024, 518, 216067. [Google Scholar] [CrossRef]
- Rodrigues, J.C.; Bezerra, C.S.; Lima, L.M.; Neves, D.D.; Paim, A.P.S.; Silva, W.E.; Lavorante, A.F. A multicommuted system using bacterial cellulose for urease immobilization and copper (II)-MOF colorimetric sensor for urea spectrophotometric determination in milk. Food Chem. 2024, 460, 140454. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Jiang, H.; Wang, W. Colorimetric sensor array for discriminating and determinating phenolic pollutants basing on different ratio of ligands in Cu/MOFs. J. Hazard. Mater. 2023, 460, 132418. [Google Scholar] [CrossRef]
- Ji, B.-T.; Liu, L.-P.; Chen, J.-H.; Gao, L.-L.; Sun, Y.; Wang, J.-J.; Deng, Z.-P.; Sun, Y.-X. Ratiometric fluorescence sensor based on dye-encapsulated Zn-MOF for highly sensitive detection of diquat in tap water and apple samples. Microchem. J. 2024, 207, 111663. [Google Scholar] [CrossRef]
- Chen, R.; Cheng, H.; Cao, X.; Huang, Z.; Zhan, Y.; Gao, S.; Huang, W.; Li, L.; Feng, J. Construction of selectively enhanced MOF-SERS sensor and highly sensitive detection of hCE1 in HepG2 cells. Microchem. J. 2024, 202, 110776. [Google Scholar] [CrossRef]
- Ahmad, M.M.; Roushani, M.; Farokhi, S. Ni-P nanosheets derived from a metal–organic framework containing triptycene ligand: A high-performance electrochemical sensor for glucose determination. Microchem. J. 2024, 197, 109737. [Google Scholar] [CrossRef]
- Wei, X.; Wang, Y.; Wang, Y.; Chai, Y.; Liu, N. Improved OER electrocatalytic performance of Co-MOF by forming heterojunction with lower-conductivityWO3 nanorods or Cr2O3 nanoparticles. Int. J. Hydrog. Energy 2024, 58, 1240–1248. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, M.; Wang, X.; Song, J.; Yang, X. Electrocatalysis in MOF Films for Flexible Electrochemical Sensing: A Comprehensive Review. Biosensors 2024, 14, 420. [Google Scholar] [CrossRef]
- Fan, J.; Wang, H.; Zeng, X.; Su, L.; Zhang, X. An electrochemical sensor based on ZIF-67/Ag nanoparticles (NPs)/polydopamine (PDA) nanocomposites for detecting chloride ion with good reproducibility. J. Electroanal. Chem. 2022, 914, 116323. [Google Scholar] [CrossRef]
- Kamal, S.; Khalid, M.; Khan, M.S.; Shahid, M. Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects. Coord. Chem. Rev. 2023, 474, 214859. [Google Scholar] [CrossRef]
- Liang, X.-H.; Yu, A.-X.; Bo, X.-J.; Du, D.-Y.; Su, Z.-M. Metal/covalent-organic frameworks-based electrochemical sensors for the detection of ascorbic acid, dopamine and uric acid. Coord. Chem. Rev. 2023, 497, 215427. [Google Scholar] [CrossRef]
- Zhu, R.; Liu, L.; Zhang, G.; Zhang, Y.; Jiang, Y.; Pang, H. Advances in Electrochemistry of Intrinsic Conductive Metal-Organic Frameworks and Their Composites: Mechanisms, Synthesis and Applications. Nano Energy 2024, 122, 109333. [Google Scholar] [CrossRef]
- Li, W.; Guo, X.; Shen, B.; Ge, H.; Zhang, J.; Liu, L.; Zheng, H.; Liu, W.; Wu, Z.; Yang, P. Facile synthesis of sub-10 nm Cu-MOF nanofibers as electrochemical sensor element for picomolar chloramphenicol detection. J. Electroanal. Chem. 2024, 958, 118160. [Google Scholar] [CrossRef]
- Pahade, P.; Bose, D.; Peris-Vicente, J.; Goberna-Bravo, M.Á.; Chiva, J.A.; Romero, J.E.; Carda-Broch, S.; Durgbanshi, A. Screening of some banned aromatic amines in textile products from Indian bandhani and gamthi fabric and in human sweat using micellar liquid chromatography. Microchem. J. 2021, 165, 106134. [Google Scholar] [CrossRef]
- Sakurada, K.; Akutsu, T.; Fukushima, H.; Watanabe, K.; Yoshino, M. Detection of dermcidin for sweat identification by real-time RT-PCR and ELISA. Forensic Sci. Int. 2010, 194, 80–84. [Google Scholar] [CrossRef]
- Nan, M.; Darmawan, B.A.; Go, G.; Zheng, S.; Lee, J.; Kim, S.; Lee, T.; Choi, E.; Park, J.-O.; Bang, D. Wearable localized surface plasmon resonance-based biosensor with highly sensitive and direct detection of cortisol in human sweat. Biosensors 2023, 13, 184. [Google Scholar] [CrossRef]
- Fiore, L.; Mazzaracchio, V.; Serani, A.; Fabiani, G.; Fabiani, L.; Volpe, G.; Moscone, D.; Bianco, G.M.; Occhiuzzi, C.; Marrocco, G. Microfluidic paper-based wearable electrochemical biosensor for reliable cortisol detection in sweat. Sens. Actuators B Chem. 2023, 379, 133258. [Google Scholar] [CrossRef]
- Yang, B.; Li, H.; Nong, C.; Li, X.; Feng, S. A novel electrochemical immunosensor based on SnS2/NiCo metal-organic frameworks loaded with gold nanoparticles for cortisol detection. Anal. Biochem. 2023, 669, 115117. [Google Scholar] [CrossRef]
- Yu, H.; Sun, J. Sweat detection theory and fluid driven methods: A review. Nanotechnol. Precis. Eng. 2020, 3, 126–140. [Google Scholar] [CrossRef]
- Mugo, S.M.; Robertson, S.V.; Lu, W. A molecularly imprinted electrochemical microneedle sensor for multiplexed metabolites detection in human sweat. Talanta 2023, 259, 124531. [Google Scholar] [CrossRef] [PubMed]
- Rovira, M.; Lafaye, C.; Wang, S.; Fernandez-Sanchez, C.; Saubade, M.; Liu, S.-C.; Jimenez-Jorquera, C. Analytical assessment of sodium ISFET based sensors for sweat analysis. Sens. Actuators B Chem. 2023, 393, 134135. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; Wei, K.; Cao, Z.; Zhu, Z.; Chen, R. Sweat as a source of non-invasive biomarkers for clinical diagnosis: An overview. Talanta 2024, 273, 125865. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Lin, X.; Feng, J.; Min, X.; Ni, Y. NiNP/Cu-MOF-C/GCE for the the noninvasive detection of glucose in natural saliva samples. Microchem. J. 2023, 190, 108657. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, T.; Jiang, L.; Asif, M.; Qiu, X.; Yu, Y.; Xiao, F.; Liu, H. Assembling metal–organic frameworks into the fractal scale for sweat sensing. ACS Appl. Mater. Interfaces 2019, 11, 32310–32319. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, Y.; Chen, Q.; Zhao, H.; Gao, B.; Zhang, T. A flexible electrochemical biosensor based on functionalized poly (3,4-ethylenedioxythiophene) film to detect lactate in sweat of the human body. J. Colloid Interface Sci. 2022, 617, 454–462. [Google Scholar] [CrossRef]
- Ma, G. Electrochemical sensing monitoring of blood lactic acid levels in sweat during exhaustive exercise. Int. J. Electrochem. Sci. 2023, 18, 100064. [Google Scholar] [CrossRef]
- Xu, Z.; Song, J.; Liu, B.; Lv, S.; Gao, F.; Luo, X.; Wang, P. A conducting polymer PEDOT: PSS hydrogel based wearable sensor for accurate uric acid detection in human sweat. Sens. Actuators B Chem. 2021, 348, 130674. [Google Scholar] [CrossRef]
- Xie, Q.; Li, R.; Li, Z. Designing of multifunctional graphene quantum dot-polyvinyl alcohol-polyglycerol luminescent film for fluorescence detection of pH in sweat. Anal. Chim. Acta 2024, 1292, 342224. [Google Scholar]
- Zhu, C.; Xue, H.; Zhao, H.; Fei, T.; Liu, S.; Chen, Q.; Gao, B.; Zhang, T. A dual-functional polyaniline film-based flexible electrochemical sensor for the detection of pH and lactate in sweat of the human body. Talanta 2022, 242, 123289. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Zhang, G.; Yu, K.; Chai, H.; Tian, M.; Qu, L.; Dong, H.; Zhang, X. Smartphone light-driven zinc porphyrinic MOF nanosheets-based enzyme-free wearable photoelectrochemical sensor for continuous sweat vitamin C detection. Chem. Eng. J. 2023, 455, 140779. [Google Scholar] [CrossRef]
- Raymundo-Pereira, P.A.; Gomes, N.O.; Machado, S.A.; Oliveira, O.N., Jr. Wearable glove-embedded sensors for therapeutic drug monitoring in sweat for personalized medicine. Chem. Eng. J. 2022, 435, 135047. [Google Scholar] [CrossRef]
- Xiao, J.; Fan, C.; Xu, T.; Su, L.; Zhang, X. An electrochemical wearable sensor for levodopa quantification in sweat based on a metal–Organic framework/graphene oxide composite with integrated enzymes. Sens. Actuators B Chem. 2022, 359, 131586. [Google Scholar] [CrossRef]
- Mehmeti, E.; Kilic, T.; Laur, C.; Carrara, S. Electrochemical determination of nicotine in smokers’ sweat. Microchem. J. 2020, 158, 105155. [Google Scholar] [CrossRef]
- Silva, R.R.; Raymundo-Pereira, P.A.; Campos, A.M.; Wilson, D.; Otoni, C.G.; Barud, H.S.; Costa, C.A.; Domeneguetti, R.R.; Balogh, D.T.; Ribeiro, S.J. Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat. Talanta 2020, 218, 121153. [Google Scholar] [CrossRef]
- Dalirirad, S.; Steckl, A.J. Aptamer-based lateral flow assay for point of care cortisol detection in sweat. Sens. Actuators B Chem. 2019, 283, 79–86. [Google Scholar] [CrossRef]
- Xi, P.; He, X.; Fan, C.; Zhu, Q.; Li, Z.; Yang, Y.; Du, X.; Xu, T. Smart Janus fabrics for one-way sweat sampling and skin-friendly colorimetric detection. Talanta 2023, 259, 124507. [Google Scholar] [CrossRef]
- Yang, M.; Sun, N.; Lai, X.; Zhao, X.; Zhou, W. Advances in Non-Electrochemical Sensing of Human Sweat Biomarkers: From Sweat Sampling to Signal Reading. Biosensors 2023, 14, 17. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Kim, S.; Jung, M.; Lee, H.; Han, M.S. Development of a fluorescent chemosensor for chloride ion detection in sweat using Ag+-benzimidazole complexes. Dye. Pigment. 2020, 177, 108291. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.; Xiao, C.; Xiao, S.; Wang, C.; Nie, Q.; Xu, P.; Chen, J.; You, R.; Zhang, G. Flexible SERS wearable sensor based on nanocomposite hydrogel for detection of metabolites and pH in sweat. Chem. Eng. J. 2023, 474, 145953. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, J.; Li, Z.; Hu, M.; Bian, C.; Lin, S. All fabric and flexible wearable sensors for simultaneous sweat metabolite detection and high-efficiency collection. Talanta 2023, 260, 124610. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez-Redín, G.; Cagnani, G.R.; Gomes, N.O.; Raymundo-Pereira, P.A.; Machado, S.A.; Gutierrez, M.A.; Krieger, J.E.; Oliveira, O.N., Jr. Wearable potentiometric biosensor for analysis of urea in sweat. Biosens. Bioelectron. 2023, 223, 114994. [Google Scholar] [CrossRef] [PubMed]
- San Nah, J.; Barman, S.C.; Zahed, M.A.; Sharifuzzaman, M.; Yoon, H.; Park, C.; Yoon, S.; Zhang, S.; Park, J.Y. A wearable microfluidics-integrated impedimetric immunosensor based on Ti3C2Tx MXene incorporated laser-burned graphene for noninvasive sweat cortisol detection. Sens. Actuators B Chem. 2021, 329, 129206. [Google Scholar]
- Wei, C.; Wang, Z.; Li, S.; Li, T.; Du, X.; Wang, H.; Liu, Q.; Yu, Z. Hierarchical copper-based metal-organic frameworks nanosheet assemblies for electrochemical ascorbic acid sensing. Colloids Surf. B Biointerfaces 2023, 223, 113149. [Google Scholar] [CrossRef]
- Sadeghi, J. Amperometric biosensors. In Encyclopedia of Biophysics; Roberts, G.C.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 61–67. [Google Scholar]
- Vasiliou, F.; Plessas, A.K.; Economou, A.; Thomaidis, N.; Papaefstathiou, G.S.; Kokkinos, C. Graphite paste sensor modified with a Cu (II)-complex for the enzyme-free simultaneous voltammetric determination of glucose and uric acid in sweat. J. Electroanal. Chem. 2022, 917, 116393. [Google Scholar] [CrossRef]
- Shen, Y.; Chai, S.; Zhang, Q.; Zhang, M.; Mao, X.; Wei, L.; Zhou, F.; Sun, R.; Liu, C. PVF composite conductive nanofibers-based organic electrochemical transistors for lactate detection in human sweat. Chem. Eng. J. 2023, 475, 146008. [Google Scholar] [CrossRef]
- Huang, M.-R.; Li, X.-G. Highly sensing and transducing materials for potentiometric ion sensors with versatile applicability. Prog. Mater. Sci. 2022, 125, 100885. [Google Scholar] [CrossRef]
- Porfireva, A.; Goida, A.; Evtugyn, V.; Evtugyn, G. Impedimetric sensor based on molecularly imprinted polythionine from deep eutectic solvent for epinephrine determination. Green Anal. Chem. 2024, 9, 100113. [Google Scholar] [CrossRef]
- Şen, F.B.; Elmas, E.; Dilgin, Y.; Bener, M.; Apak, R. Amperometric sensor for total antioxidant capacity measurement using Cu (II)-neocuproine/carrageenan-MWCNT/GCE. Microchem. J. 2024, 199, 110081. [Google Scholar] [CrossRef]
- Luo, B.; Xi, X.; Wu, Y.; Wu, D.; Jiang, B.; Shen, C.; Wang, Z.; Zhang, F.; Su, Y.; Liu, R. Organic Electrochemical Transistors for Monitoring Dissolved Oxygen in Aqueous Electrolytes of Zinc Ion Batteries. Sens. Actuators B Chem. 2024, 409, 135601. [Google Scholar] [CrossRef]
- Tan, A.Y.S.; Awan, H.T.A.; Cheng, F.; Zhang, M.; Tan, M.T.; Manickam, S.; Khalid, M.; Muthoosamy, K. Recent advances in the use of MXenes for photoelectrochemical sensors. Chem. Eng. J. 2024, 482, 148774. [Google Scholar] [CrossRef]
- Muratova, I.S.; Kartsova, L.A.; Mikhelson, K.N. Voltammetric vs. potentiometric sensing of dopamine: Advantages and disadvantages, novel cell designs, fundamental limitations and promising options. Sens. Actuators B Chem. 2015, 207, 900–906. [Google Scholar] [CrossRef]
- An, Q.; Gan, S.; Xu, J.; Bao, Y.; Wu, T.; Kong, H.; Zhong, L.; Ma, Y.; Song, Z.; Niu, L. A multichannel electrochemical all-solid-state wearable potentiometric sensor for real-time sweat ion monitoring. Electrochem. Commun. 2019, 107, 106553. [Google Scholar] [CrossRef]
- Cosio, M.; Scampicchio, M.; Benedetti, S. Electronic Noses and Tongues; Academic Press: Boston, MA, USA, 2012. [Google Scholar]
- Gajdosova, V.P.; Lorencova, L.; Blsakova, A.; Kasak, P.; Bertok, T.; Tkac, J. Challenges for impedimetric affinity sensors targeting protein detection. Curr. Opin. Electrochem. 2021, 28, 100717. [Google Scholar] [CrossRef]
- Devadoss, A.; Sudhagar, P.; Terashima, C.; Nakata, K.; Fujishima, A. Photoelectrochemical biosensors: New insights into promising photoelectrodes and signal amplification strategies. J. Photochem. Photobiol. C Photochem. Rev. 2015, 24, 43–63. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, L.; Zhang, S.; Wang, J.; Liu, Z. An ultrasensitive and wearable photoelectrochemical sensor for unbiased and accurate monitoring of sweat glucose. Sens. Actuators B Chem. 2022, 354, 131204. [Google Scholar] [CrossRef]
- Xu, A.; Xu, M.; Luo, F.; Lin, C.; Qiu, B.; Lin, Z.; Jiang, Z.; Wang, J. Realizing high-performance glucose sensing in sweat: Synergistic use of nickel oxide nanosheets as photoelectrodes and the masking effect of Mo-POM for photoelectrochemical detection. Sens. Actuators B Chem. 2024, 403, 135135. [Google Scholar] [CrossRef]
- Kanokpaka, P.; Chang, L.-Y.; Wang, B.-C.; Huang, T.-H.; Shih, M.-J.; Hung, W.-S.; Lai, J.-Y.; Ho, K.-C.; Yeh, M.-H. Self-powered molecular imprinted polymers-based triboelectric sensor for noninvasive monitoring lactate levels in human sweat. Nano Energy 2022, 100, 107464. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Liu, Y. A graphene-based electrochemical detection platform for monitoring the change of potassium content in sweat during exhaustive exercise. Int. J. Electrochem. Sci. 2023, 18, 100181. [Google Scholar] [CrossRef]
- Poletti, F.; Zanfrognini, B.; Favaretto, L.; Quintano, V.; Sun, J.; Treossi, E.; Melucci, M.; Palermo, V.; Zanardi, C. Continuous capillary-flow sensing of glucose and lactate in sweat with an electrochemical sensor based on functionalized graphene oxide. Sens. Actuators B Chem. 2021, 344, 130253. [Google Scholar] [CrossRef]
- Qing, X.; Wu, J.; Shu, Q.; Wang, D.; Li, M.; Liu, D.; Wang, X.; Lei, W. High gain fiber-shaped transistor based on rGO-mediated hierarchical polypyrrole for ultrasensitive sweat sensor. Sens. Actuators A Phys. 2023, 354, 114297. [Google Scholar] [CrossRef]
- Cui, X.; Bao, Y.; Han, T.; Liu, Z.; Ma, Y.; Sun, Z. A wearable electrochemical sensor based on β-CD functionalized graphene for pH and potassium ion analysis in sweat. Talanta 2022, 245, 123481. [Google Scholar] [CrossRef] [PubMed]
- Barber, R.; Davis, J.; Papakonstantinou, P. Stable chitosan and prussian blue-coated laser-induced graphene skin sensor for the electrochemical detection of hydrogen peroxide in sweat. ACS Appl. Nano Mater. 2023, 6, 10290–10302. [Google Scholar] [CrossRef]
- Li, P.; Ling, Z.; Liu, X.; Bai, L.; Wang, W.; Chen, H.; Yang, H.; Yang, L.; Wei, D. Nanocomposite hydrogels flexible sensors with functional cellulose nanocrystals for monitoring human motion and lactate in sweat. Chem. Eng. J. 2023, 466, 143306. [Google Scholar] [CrossRef]
- Liu, X.; Cai, Z.; Gao, N.; Ye, S.; Tao, T.; He, H.; Chang, G.; He, Y. Controllable preparation of (200) facets preferential oriented silver nanowires for non-invasive detection of glucose in human sweat. Smart Mater. Med. 2021, 2, 150–157. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, T.; Li, K.; Long, D.; Zhao, J.; Zhu, F.; Gong, W. A flexible nonenzymatic sweat glucose sensor based on Au nanoflowers coated carbon cloth. Sens. Actuators B Chem. 2023, 388, 133798. [Google Scholar] [CrossRef]
- Zhu, Y.; Qi, Y.; Xu, M.; Luo, J. Flexible biosensor based on signal amplification of gold nanoparticles-composite flower clusters for glucose detection in sweat. Colloids Surf. A Physicochem. Eng. Asp. 2023, 661, 130908. [Google Scholar] [CrossRef]
- Yamuna, A.; Chen, T.-W.; Akilarasan, M.; Chen, S.-M.; Lou, B.-S. Electrochemical determination of glucose in blood serum and sweat samples by the strontium doped Co3O4. J. Electroanal. Chem. 2022, 905, 115978. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, S.; Zhan, X.; Meng, W.; Wang, H.; Liu, C.; Zhang, T.; Zhang, K.; Su, S. Smartphone-based wearable microfluidic electrochemical sensor for on-site monitoring of copper ions in sweat without external driving. Talanta 2024, 266, 125015. [Google Scholar] [CrossRef]
- Laochai, T.; Yukird, J.; Promphet, N.; Qin, J.; Chailapakul, O.; Rodthongkum, N. Non-invasive electrochemical immunosensor for sweat cortisol based on L-cys/AuNPs/MXene modified thread electrode. Biosens. Bioelectron. 2022, 203, 114039. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Jiang, M.; Su, M.; Cao, X.; Jiang, Q.; Liu, Q.; Yu, C. Sweat cortisol determination utilizing MXene and multi-walled carbon nanotube nanocomposite functionalized immunosensor. Microchem. J. 2023, 185, 108172. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Liu, X.; Liu, Y.; Cheng, Y.; Cui, D.; Chen, F.; Cao, W. A MXene/MoS2 heterostructure based biosensor for accurate sweat ascorbic acid detection. FlatChem 2023, 39, 100503. [Google Scholar] [CrossRef]
- Mo, L.; Ma, X.; Fan, L.; Xin, J.H.; Yu, H. Weavable, large-scaled, rapid response, long-term stable electrochemical fabric sensor integrated into clothing for monitoring potassium ions in sweat. Chem. Eng. J. 2023, 454, 140473. [Google Scholar] [CrossRef]
- Tao, B.; Yang, W.; Miao, F.; Zang, Y.; Chu, P.K. A sensitive enzyme-free electrochemical sensor composed of Co3O4/CuO@MWCNTs nanocomposites for detection of L-lactic acid in sweat solutions. Mater. Sci. Eng. B 2023, 288, 116163. [Google Scholar] [CrossRef]
- Varsha, M.; Nageswaran, G. Direct electrochemical synthesis of metal organic frameworks. J. Electrochem. Soc. 2020, 167, 155527. [Google Scholar]
- Vaitsis, C.; Kanellou, E.; Pandis, P.K.; Papamichael, I.; Sourkouni, G.; Zorpas, A.A.; Argirusis, C. Sonochemical synthesis of zinc adipate Metal-Organic Framework (MOF) for the electrochemical reduction of CO2: MOF and circular economy potential. Sustain. Chem. Pharm. 2022, 29, 100786. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, S.; Yan, X.; Lv, Y. Recent advances in metal-organic frameworks: Synthesis, application and toxicity. Sci. Total Environ. 2023, 902, 165944. [Google Scholar] [CrossRef]
- Wang, L.; Pan, L.; Han, X.; Ha, M.N.; Li, K.; Yu, H.; Zhang, Q.; Li, Y.; Hou, C.; Wang, H. A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF). J. Colloid Interface Sci. 2022, 616, 326–337. [Google Scholar] [CrossRef]
- Elashery, S.E.; Attia, N.F.; Oh, H. Design and fabrication of novel flexible sensor based on 2D Ni-MOF nanosheets as a preliminary step toward wearable sensor for onsite Ni (II) ions detection in biological and environmental samples. Anal. Chim. Acta 2022, 1197, 339518. [Google Scholar] [CrossRef]
- Srinivasan, P.; Sethuraman, M.G.; Govindasamy, M.; Gokulkumar, K.; Alothman, A.A.; Alanazi, H.A.; Huang, C.-H. Nanomolar Detection of Organic Pollutant-Tartrazine in Food Samples Using Zinc-Metal Organic Framework/Carbon Nano Fiber-Composite Modified Screen-Printed Electrode. J. Food Compos. Anal. 2024, 133, 106462. [Google Scholar] [CrossRef]
- Manquian, C.; Navarrete, A.; Vivas, L.; Troncoso, L.; Singh, D.P. Synthesis and Optimization of Ni-Based Nano Metal–Organic Frameworks as a Superior Electrode Material for Supercapacitor. Nanomaterials 2024, 14, 353. [Google Scholar] [CrossRef] [PubMed]
- Poudel, M.B.; Awasthi, G.P.; Kim, H.J. Novel insight into the adsorption of Cr (VI) and Pb (II) ions by MOF derived Co-Al layered double hydroxide@hematite nanorods on 3D porous carbon nanofiber network. Chem. Eng. J. 2021, 417, 129312. [Google Scholar] [CrossRef]
- Guo, X.; Feng, S.; Peng, Y.; Li, B.; Zhao, J.; Xu, H.; Meng, X.; Zhai, W.; Pang, H. Emerging insights into the application of metal-organic framework (MOF)-based materials for electrochemical heavy metal ion detection. Food Chem. 2024, 463, 141387. [Google Scholar] [CrossRef]
- Kajal, N.; Singh, V.; Gupta, R.; Gautam, S. Metal organic frameworks for electrochemical sensor applications: A review. Environ. Res. 2022, 204, 112320. [Google Scholar] [CrossRef]
- Li, W.-H.; Deng, W.-H.; Wang, G.-E.; Xu, G. Conductive MOFs. EnergyChem 2020, 2, 100029. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Y.; Xu, M.; Ly, A.; Gili, A.; Murphy, E.; Asset, T.; Liu, Y.; De Andrade, V.; Segre, C.U. Catalysts by pyrolysis: Transforming metal-organic frameworks (MOFs) precursors into metal-nitrogen-carbon (MNC) materials. Mater. Today 2023, 69, 66–78. [Google Scholar] [CrossRef]
- Zhang, X.; Li, G.; Zhang, Y.; Luo, D.; Yu, A.; Wang, X.; Chen, Z. Amorphizing metal-organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries. Nano Energy 2021, 86, 106094. [Google Scholar] [CrossRef]
- Subramaniyam, V.; Thangadurai, D.T.; Ravi, P.V.; Pichumani, M. Do the acid/base modifiers in solvothermal synthetic conditions influence the formation of Zr-Tyr MOFs to be amorphous? J. Mol. Struct. 2022, 1267, 133611. [Google Scholar] [CrossRef]
- Wang, W.; Chai, M.; Lin, R.; Yuan, F.; Wang, L.; Chen, V.; Hou, J. Amorphous MOFs for next generation supercapacitors and batteries. Energy Adv. 2023, 2, 1591–1603. [Google Scholar] [CrossRef]
- Liu, K.-K.; Meng, Z.; Fang, Y.; Jiang, H.-L. Conductive MOFs for electrocatalysis and electrochemical sensor. eScience 2023, 3, 100133. [Google Scholar] [CrossRef]
- Xia, Y.; Su, T.; Mi, Z.; Feng, Z.; Hong, Y.; Hu, X.; Shu, Y. Wearable electrochemical sensor based on bimetallic MOF coated CNT/PDMS film electrode via a dual-stamping method for real-time sweat glucose analysis. Anal. Chim. Acta 2023, 1278, 341754. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Mi, Z.; Xia, Y.; Jin, D.; Xu, Q.; Hu, X.; Shu, Y. A wearable sweat electrochemical aptasensor based on the Ni–Co MOF nanosheet-decorated CNTs/PU film for monitoring of stress biomarker. Talanta 2023, 260, 124620. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Chen, T.; Hu, Y.; Son, K. Ultra-thin 2D bimetallic MOF nanosheets for highly sensitive and stable detection of glucose in sweat for dancer. Discov. Nano 2023, 18, 62. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Liu, Y.; Zeng, X.; Jin, C.; Huo, D.; Hou, J.; Hou, C. A wearable flexible electrochemical biosensor with CuNi-MOF@rGO modification for simultaneous detection of uric acid and dopamine in sweat. Anal. Chim. Acta 2024, 1299, 342441. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Tsao, P.-K.; Rinawati, M.; Chen, K.-J.; Chen, K.-Y.; Chang, C.Y.; Yeh, M.-H. Designing ZIF-67 derived NiCo layered double hydroxides with 3D hierarchical structure for Enzyme-free electrochemical lactate monitoring in human sweat. Chem. Eng. J. 2022, 427, 131687. [Google Scholar] [CrossRef]
- Cunha-Silva, H.; Arcos-Martinez, M.J. Dual range lactate oxidase-based screen printed amperometric biosensor for analysis of lactate in diversified samples. Talanta 2018, 188, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, T.; Asif, M.; Yu, Y.; Wang, W.; Wang, H.; Xiao, F.; Liu, H. Rimelike structure-inspired approach toward in situ-oriented self-assembly of hierarchical porous MOF films as a sweat biosensor. ACS Appl. Mater. Interfaces 2018, 10, 27936–27946. [Google Scholar] [CrossRef]
- Paul, A.; Vyas, G.; Paul, P.; Srivastava, D.N. Gold-nanoparticle-encapsulated ZIF-8 for a mediator-free enzymatic glucose sensor by amperometry. ACS Appl. Nano Mater. 2018, 1, 3600–3607. [Google Scholar] [CrossRef]
- Ganash, A.; Othman, S.; Al-Moubaraki, A.; Ganash, E. An electrodeposition of Cu-MOF on platinum electrode for efficient electrochemical degradation of tartrazine dye with parameter control and degradation mechanisms: Experimental and theoretical findings. Appl. Surf. Sci. Adv. 2024, 19, 100577. [Google Scholar] [CrossRef]
- Wang, H.; Dai, Y.; Wang, Y.; Yin, L. One-pot solvothermal synthesis of Cu–Fe-MOF for efficiently activating peroxymonosulfate to degrade organic pollutants in water: Effect of electron shuttle. Chemosphere 2024, 352, 141333. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, K.; Fan, L.; Song, Z.; Han, H.; Wang, Q.; Song, S.; Liu, D.; Feng, S. Modification of carnation-like CuInS2 with Cu-MOF nanoparticles for efficient photocatalytic hydrogen production. Int. J. Hydrog. Energy 2024, 59, 551–560. [Google Scholar] [CrossRef]
- Gao, Z.; Guan, J.; Wang, M.; Liu, S.; Chen, K.; Liu, Q.; Chen, X. A novel laccase-like Cu-MOF for colorimetric differentiation and detection of phenolic compounds. Talanta 2024, 272, 125840. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, Y.; Xu, Z.; Wang, Y. In situ anchoring Cu nanoclusters on Cu-MOF: A new strategy for a combination of catalysis and fluorescence toward the detection of H2O2 and 2, 4-DNP. Chem. Eng. J. 2024, 479, 147508. [Google Scholar] [CrossRef]
- Liu, L.; Ma, T.; Xu, L.; Wang, B.; Zhang, L.; Fu, Y.; Yang, H.; Ji, W. Dense pyridine nitrogen as surface decoration of interwoven Cu-MOFs for chloramphenicol-specific electrochemical sensor. Microchem. J. 2024, 200, 110318. [Google Scholar] [CrossRef]
- Kiran, S.; Yasmeen, G.; Shafiq, Z.; Abbas, A.; Manzoor, S.; Hussain, D.; Pashameah, R.A.; Alzahrani, E.; Alanazi, A.K.; Ashiq, M.N. Nickel-based nitrodopamine MOF and its derived composites functionalized with multi-walled carbon nanotubes for efficient OER applications. Fuel 2023, 331, 125881. [Google Scholar] [CrossRef]
- Shin, S.; Shin, M.W. Nickel metal–organic framework (Ni-MOF) derived NiO/C@CNF composite for the application of high performance self-standing supercapacitor electrode. Appl. Surf. Sci. 2021, 540, 148295. [Google Scholar] [CrossRef]
- Khan, J.; Shakeel, N.; Alam, S.; Iqbal, M.Z.; Ahmad, Z.; Yusuf, K. Exploring the potency of EDTA-based Ni-Co-MOF nanospheres for highly durable battery-supercapacitor hybrids. Electrochim. Acta 2024, 486, 143970. [Google Scholar] [CrossRef]
- Dong, P.; Pan, J.; Zhang, L.; Yang, X.-L.; Xie, M.-H.; Zhang, J. Regulation of electron delocalization between flower-like (Co, Ni)-MOF array and WO3/W photoanode for effective photoelectrochemical water splitting. Appl. Catal. B Environ. Energy 2024, 350, 123925. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, M.; Geng, Q.; Gao, X. Co/Ni-MOF as a bifunctional electrode material for electrochemical sensor and oxygen evolution reaction. Mater. Lett. 2024, 355, 135538. [Google Scholar] [CrossRef]
- Iravani, S.; Zare, E.N.; Zarrabi, A.; Khosravi, A.; Makvandi, P. MXene/zeolitic imidazolate framework (ZIF) composites: A perspective on their emerging applications. FlatChem 2024, 44, 100631. [Google Scholar] [CrossRef]
- Li, Y.-R.; Dong, X.; Pan, S.-Y.; Luo, L.; Lei, H.-T.; Xu, Z.-L. Design to enhance sensing performance of ZIF-8 crystals. Prog. Nat. Sci. Mater. Int. 2024, 34, 240–250. [Google Scholar] [CrossRef]
- Nazir, M.A.; Shaik, M.R.; Ullah, S.; Hossain, I.; Najam, T.; Ullah, S.; Muhammad, N.; Shah, S.S.A.; ur Rehman, A. Synthesis of bimetallic Mn@ZIF–8 nanostructure for the adsorption removal of methyl orange dye from water. Inorg. Chem. Commun. 2024, 165, 112294. [Google Scholar] [CrossRef]
- Hu, L.; Xu, W.; Jiang, Q.; Ji, R.; Yan, Z.; Wu, G. Recent progress on CO2 cycloaddition with epoxide catalyzed by ZIFs and ZIFs-based materials. J. CO2 Util. 2024, 81, 102726. [Google Scholar] [CrossRef]
- Kumar, A.; Arya, K.; Mehra, S.; Kumar, A.; Mehta, S.K.; Kataria, R. Luminescent Zn-MOF@COF hybrid for selective decontamination of Cu (II) ions and methylene blue dye in aqueous media. Sep. Purif. Technol. 2024, 340, 126756. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Shu, Y.; Han, Q.; Chen, B.; Liu, B.; Wang, Z.; Tang, C.Y. Precisely regulated in-plane pore sizes of Co-MOF nanosheet membranes for efficient dye recovery. Desalination 2023, 567, 116979. [Google Scholar] [CrossRef]
- Gurav, S.R.; Chodankar, G.R.; Sawant, S.A.; Shembade, U.V.; Moholkar, A.V.; Sonkawade, R.G. Exploring the potential of simultaneous nanoarchitectonics and utilization of Co-MOFs electrode as well as powder for aqueous supercapacitors. J. Energy Storage 2023, 73, 109254. [Google Scholar] [CrossRef]
- Yang, W.; Zhu, L.; Xu, W. Biologically inspired Co-MOF as catalase mimics with an unexpected ROS production ability for the efficient removal of organic dyes. J. Environ. Chem. Eng. 2024, 12, 112358. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, L.; Hong, P.; He, X.; Gao, S.; Yu, Y.; Liao, B.; Pang, H. Densely stacked lamellate Co-MOF for boosting the recycling performance in ofloxacin degradation. J. Environ. Chem. Eng. 2023, 11, 111480. [Google Scholar] [CrossRef]
- Xu, F.; Wang, L.; Wu, M.; Ma, G. Vertical growth of leaf-like Co-metal organic framework on carbon fiber cloth as integrated electrode for sensitive detection of dopamine and uric acid. Sens. Actuators B Chem. 2023, 386, 133734. [Google Scholar] [CrossRef]
- Moallem, Q.A.; Beitollahi, H. Electrochemical sensor for simultaneous detection of dopamine and uric acid based on a carbon paste electrode modified with nanostructured Cu-based metal-organic frameworks. Microchem. J. 2022, 177, 107261. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, H.; Li, C.-H.; Guo, X.-M. Multimode determination of uric acid based on porphyrinic MOFs thin films by electrochemical and photoelectrochemical methods. Microchem. J. 2022, 175, 107198. [Google Scholar] [CrossRef]
- Chen, X.; Feng, X.-Z.; Zhan, T.; Xue, Y.-T.; Li, H.-X.; Han, G.-C.; Chen, Z.; Kraatz, H.-B. Construction of a portable enzyme-free electrochemical glucose detection system based on the synergistic interaction of Cu-MOF and PtNPs. Sens. Actuators B Chem. 2023, 395, 134498. [Google Scholar] [CrossRef]
- Tian, Y.; Xie, L.; Liu, X.; Geng, Y.; Wang, J.; Ma, M. In situ synthesis of self-supporting conductive CuCo-based bimetal organic framework for sensitive nonenzymatic glucose sensing in serum and beverage. Food Chem. 2024, 437, 137875. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Jin, S.; Wang, H.; Pang, J.; Peng, W.; Chen, L. Copper-based bimetallic metal–organic framework in-situ embedded of heterogeneous Cu nanoparticles for enhanced nonenzymatic glucose sensing. Mater. Today Chem. 2024, 35, 101884. [Google Scholar] [CrossRef]
- Chen, C.; Li, J.; Tang, Z.; Liao, G.; Nie, L. In-situ co-precipitation of Bi-MOF derivatives for highly sensitive electrochemical glucose sensing. Microchem. J. 2024, 199, 109897. [Google Scholar] [CrossRef]
- Moradi, M.; Afkhami, A.; Madrakian, T.; Moazami, H.R. Electrosynthesis of CoMn layered-double-hydroxide as a precursor for Co-Mn-MOFs and subsequent electrochemical sulfurization for supercapacitor application. J. Energy Storage 2023, 71, 108177. [Google Scholar] [CrossRef]
- Feng, X.; Chen, C.; He, C.; Chai, S.; Yu, Y.; Cheng, J. Non-thermal plasma coupled with MOF-74 derived Mn-Co-Ni-O porous composite oxide for toluene efficient degradation. J. Hazard. Mater. 2020, 383, 121143. [Google Scholar] [CrossRef]
- Li, C.; Chai, Q.; Liu, X.; Song, L.; Peng, T.; Lin, C.; Zhang, Y.; Qiu, W.; Sun, S.; Zheng, X. Mn/Co bimetallic MOF-derived hexagonal multilayered oxide catalysts with rich interface defects for propane total oxidation: Characterization, catalytic performance and DFT calculation. Appl. Catal. A Gen. 2023, 668, 119449. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Gao, P.; Yin, W.; Yin, M.; Pu, H.; Sun, Q.; Liang, X.; Fa, H.-b. Bimetal-organic frameworks MnCo-MOF-74 derived Co/MnO@HC for the construction of a novel enzyme-free glucose sensor. Microchem. J. 2022, 175, 107097. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Choudhury, A.; Dey, B.; Anand, S.; Al Saidi, A.K.A.; Lee, G.H.; Yang, D.-J. Three-dimensional core-shell niobium-metal organic framework@carbon nanofiber mat as a binder-free positive electrode for asymmetric supercapacitor. J. Energy Storage 2022, 55, 105484. [Google Scholar] [CrossRef]
- Nizamidin, P.; Yang, Q.; Du, X.; Guo, C. Optical gas sensing and kinetics of azobenzene modified niobium metal-organic framework film composite optical waveguides. Opt. Laser Technol. 2023, 167, 109708. [Google Scholar] [CrossRef]
- Dey, B.; Ahmad, M.W.; Sarkhel, G.; Lee, G.H.; Choudhury, A. Fabrication of niobium metal organic frameworks anchored carbon nanofiber hybrid film for simultaneous detection of xanthine, hypoxanthine and uric acid. Microchem. J. 2023, 186, 108295. [Google Scholar] [CrossRef]
- Manivel, P.; Suryanarayanan, V.; Nesakumar, N.; Velayutham, D.; Madasamy, K.; Kathiresan, M.; Kulandaisamy, A.J.; Rayappan, J.B.B. A novel electrochemical sensor based on a nickel-metal organic framework for efficient electrocatalytic oxidation and rapid detection of lactate. New J. Chem. 2018, 42, 11839–11846. [Google Scholar] [CrossRef]
- Koyappayil, A.; Yeon, S.-h.; Chavan, S.G.; Jin, L.; Go, A.; Lee, M.-H. Efficient and rapid synthesis of ultrathin nickel-metal organic framework nanosheets for the sensitive determination of glucose. Microchem. J. 2022, 179, 107462. [Google Scholar] [CrossRef]
- Xiang, M.; Wu, J.; Lu, T.; Lin, W.; Quan, M.; Ye, H.; Dong, S.; Yang, Z. Ni-MOFs grown on carbonized loofah sponge for electrochemical glucose detection: Effects of different carboxylic acid ligands and reaction temperatures on electrochemical performance. J. Taiwan Inst. Chem. Eng. 2024, 155, 105269. [Google Scholar] [CrossRef]
- Li, G.; Chen, D.; Chen, Y.; Dong, L. MOF Ni-BTC derived Ni/C/graphene composite for highly sensitive non-enzymatic electrochemical glucose detection. ECS J. Solid State Sci. Technol. 2021, 9, 121014. [Google Scholar] [CrossRef]
- Li, F.; Liu, L.; Liu, T.; Zhang, M. Ni-MOF nanocomposites decorated by au nanoparticles: An electrochemical sensor for detection of uric acid. Ionics 2022, 28, 4843–4851. [Google Scholar] [CrossRef]
- Li, G.; Liu, S.; Liu, D.; Zhang, N. MOF-derived porous nanostructured Ni2P/C material with highly sensitive electrochemical sensor for uric acid. Inorg. Chem. Commun. 2021, 130, 108713. [Google Scholar] [CrossRef]
- Hao, Y.; Guo, H.; Yang, F.; Zhang, J.; Wu, N.; Wang, M.; Li, C.; Yang, W. Hydrothermal synthesis of MWCNT/Ni-Mn-S composite derived from bimetallic MOF for high-performance electrochemical energy storage. J. Alloys Compd. 2022, 911, 164726. [Google Scholar] [CrossRef]
- Meng, T.-L.; Wang, J.-W.; Ma, Y.-X.; Chen, X.-Q.; Lei, L.; Li, J.; Ran, F. Fabrication of a novel nanohybrid via the introduction of Ni/Mn-LDH into Ni-MOFs/MWCNTs for high-performance electrochemical supercapacitor. Diam. Relat. Mater. 2024, 143, 110901. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, T. Electrochemical in-situ generation of Ni-Mn MOF nanomaterials as anode materials for lithium-ion batteries. J. Alloys Compd. 2023, 942, 168926. [Google Scholar] [CrossRef]
- Wei, Y.; Hui, Y.; Lu, X.; Liu, C.; Zhang, Y.; Fan, Y.; Chen, W. One-pot preparation of NiMn layered double hydroxide-MOF material for highly sensitive electrochemical sensing of glucose. J. Electroanal. Chem. 2023, 933, 117276. [Google Scholar] [CrossRef]
- Liu, L.; Liu, L.; Wang, Y.; Ye, B.-C. A novel electrochemical sensor based on bimetallic metal–organic framework-derived porous carbon for detection of uric acid. Talanta 2019, 199, 478–484. [Google Scholar] [CrossRef]
- Shanmugam, R.; Aniruthan, S.; Yamunadevi, V.; Nellaiappan, S.; Amali, A.J.; Suresh, D. Co-N/Zn@NPC derived from bimetallic zeolitic imidazolate frameworks: A dual mode simultaneous electrochemical sensor for uric acid and ascorbic acid. Surf. Interfaces 2023, 40, 103103. [Google Scholar] [CrossRef]
- Chen, W.; Wang, S.; Yang, M. Encapsulation of Pt nanoparticles in ZIF-8 derived porous carbon for uric acid sensing. Mater. Lett. 2023, 331, 133408. [Google Scholar] [CrossRef]
- Zhao, Z.; Kong, Y.; Liu, C.; Huang, G.; Xiao, Z.; Zhu, H.; Bao, Z.; Mei, Y. Atomic layer deposition-assisted fabrication of 3D Co-doped carbon framework for sensitive enzyme-free lactic acid sensor. Chem. Eng. J. 2021, 417, 129285. [Google Scholar] [CrossRef]
- Song, D.; Wang, L.; Qu, Y.; Wang, B.; Li, Y.; Miao, X.; Yang, Y.; Duan, C. A high-performance three-dimensional hierarchical structure MOF-derived NiCo LDH nanosheets for non-enzymatic glucose detection. J. Electrochem. Soc. 2019, 166, B1681. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, L.; Zhang, Y.; Guo, R.; Hu, T. A heterometallic sensor based on Ce@Zn-MOF for electrochemical recognition of uric acid. Microporous Mesoporous Mater. 2021, 322, 111126. [Google Scholar] [CrossRef]
- Liu, T.-H.; Li, Q.; Yin, H.-Y.; Cai, X.-B.; Wang, Z.-G.; Wu, Z.-Q.; Li, D.; Fan, Z.-L.; Zhu, W. Tuning band structures at metal sulfides/Zr-MOF heterojunctions: Modulate optical-electronic properties to boost photocatalytic detoxification of Cr (VI) and degradation of reactive dyes. J. Mol. Struct. 2024, 1298, 137081. [Google Scholar] [CrossRef]
- Jiang, S.; Yan, Z.; Deng, Y.; Deng, W.; Xiao, H.; Wu, W. Fluorescent bacterial cellulose@Zr-MOF via in-situ synthesis for efficient enrichment and sensitive detection of Cr (VI). Int. J. Biol. Macromol. 2024, 262, 129854. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Qian, X.; Jin, Y.; Miao, X.; Deng, A.; Li, J. Ultrasensitive detection of zearalenone based on electrochemiluminescent immunoassay with Zr-MOF nanoplates and Au@MoS2 nanoflowers. Anal. Chim. Acta 2024, 1299, 342451. [Google Scholar] [CrossRef] [PubMed]
Type of Electrochemical Sensor | Advantages | Disadvantages | Comments | Ref |
---|---|---|---|---|
Amperometric | The fixed potential during amperometric detection results in a negligible charging current. | It leads to the consumption of the analyte that may result in hindering the measurements at low concentrations. | [76,84] | |
Impedimetric | It is a simple, sensitive, and nondestructive method. The sensor can be miniaturized into devices. | The nonspecific interaction of biomolecules affects the sensor response. | [87] | |
Organic electrochemical transistor | It is easy to be designed and does not need a high voltage for operation. | It has high hardness and a large mass. | The fiber-based organic electrochemical transistors have been used to overcome the limitation of large mass. | [78] |
Potentiometric | It has a fast response and an ability for miniaturization and integration. There is no consumption of the target analyte during the electroanalysis. | The signal of the potentiometric sensor depends on temperature and determines the free ions only. | [73,84,85,86] | |
Photoelectrochemical | It is known for its simple instrumentation, low cost, and miniaturization, low background, and high sensitivity. | It has poor stability for bioanalysis. | This stability limitation can be overcome by using an enzyme-free system | [88,89,90] |
Voltametric | It shows superior sensitivity, robustness, and selectivity | It leads to the consumption of the analyte that may result in hindering the measurements at low concentrations | [5,84] |
Electrocatalyst | Example | Sweat Biomarker | Catalytic Mechanism | Comments | Ref |
---|---|---|---|---|---|
Conductive polymers | PEDOT | Lactate | Lactate was oxidized by lactate oxidase to form pyruvate and hydrogen peroxide. Then, hydrogen peroxide was decomposed into hydrogen ions, which were oxidized at the PEDOT interface producing a current response. | Conductive polymers are flexible and conductive with acceptable mechanical properties. | [57] |
MIPs | Lactate | They are specific and inexpensive with high reproducibility. | [92] | ||
Graphene-based materials | Graphene | K+ | The electrocatalytic activity of graphene is attributed to its superior conductivity and large surface area. | [93] | |
Graphene oxide | Glucose -Lactate | The high number of oxidized moieties are considered active sites for the interaction with the target analytes. | [94] | ||
Reduced -graphene oxide | pH—K+ | [95] | |||
Dyes | Prussian Blue | H2O2 | The reduced form of Prussian blue, Prussian white, catalyzed the reduction of hydrogen peroxide at low potential. | [96] | |
Metal complexes | Cu(II)-complex | Glucose | 1-Reduction of Cu(II) in the complex to metallic Cu by applying a negative potential 2-Oxidation of glucose by the electrogenerated Cu(II) during DPV scan | [77] |
MOF | NP/NC | Electrochemical Behavior of MOF NC | Comments | Ref |
---|---|---|---|---|
Cu-MOF | Pt | Cu-MOF enhanced the signal’s sensitivity and stability, while Pt allowed higher sensitivity for detecting sweat biomarker due to its high electrocatalytic activity. | The chitosan layer was added as a biocompatible cationic polymer for enzyme immobilization. | [129,130] |
Cu-MOF | Cu-MOF acted as an electrocatalyst by increasing the electrochemically active surface area and enhancing the electron transfer rate. | [56,75,130] | ||
Ni-MOF | Ni3(HITP)2 | Ni-MOF NPs showed high electrocatalytic activity resulting from the effects of highly active Ni-N4 catalytic sites, the two-dimensional superimposed honeycomb lattice of Ni-MOF, and the increased surface area. | [111] | |
Porous carbon, polypyrrole, Ni-MOF | Ni-MOF NC acted as an electroactive material and adsorbent for the sweat biomarker. | Ni-MOF was incorporated with porous carbon cloth decorated with nitrogen. | [112] | |
NiCO-MOF | NiCo-MOF, CNTs | NiCo-MOF efficiently captured the aptamer of sweat cortisol owing to its high specific surface area. | [125] | |
CNTs, MWCNT | NiCo-MOF exhibited high electrocatalytic activity and optimized sensitivity for sweat biomarkers. | NiCo-MOF NC showed high stability under stretching and bending conditions. | [124] | |
ZIF-8 | Au NPs | The thermally and chemically stable ZIF-8 was used to encapsulate the enzyme and NPs. The presence of conductive Au NPs boosted the activity of the enzyme and improved electron transfer. | [131] | |
ZIF-67 | ZIF-67 derived NiCo LDH | ZIF-67 acted as an electrocatalyst for enhancing the oxidation of sweat biomarker. | [128] | |
ZIF-67, Ag NPs | ZIF-67 provided good dispersity as well as a protective effect for Ag NPs. | [41] | ||
Zn-MOF | Zn-TCPP- MOF, MWCNT | MOF NC generated electron-hole pairs under the stimulation of a light source. | [62] |
MOF | NPs | Electrode Material | Sweat Biomarker | Electrochemical Technique | LOD | Ref |
---|---|---|---|---|---|---|
Cu-MOF | Pt | Lactate oxidase/Cu-MOF/chitosan/Pt NPs/SPE | Lactate | Amperometry | 0.75 μM | [129] |
Cu-MOF | ACF-rGO/Cu(INA)2 | Lactate | Amperometry | 500 nM | [130] | |
Glucose | 50 nM | |||||
Cu-MOF | Cu-CAT nanowires/CP | Lactate | Amperometry | 10 μM | [56] | |
Glucose | 2 μM | |||||
Cu-MOF | Cu-BDC/GCE | Ascorbic acid | Amperometry | 0.1 μM | [75] | |
Ni-MOF (Ni3(HITP)2) | Ni3(HITP)2 | Ni3(HITP)2 nanorods/SPCE | Ascorbic acid | Amperometry | 1 μM | [111] |
Ni-MOF | Porous carbon, polypyrrole, Ni-MOF | AFCC-polypyrrole NPs/2D Ni-MOF | Ni (II) ions | Potentiometry | 2.7 × 10−6 M | [112] |
NiCO-MOF | NiCo-MOF, CNTs | Cortisol/apt/NiCo-MOF/CNTs/PVA/CP | Cortisol | DPV | 0.032 ng/mL | [125] |
CNTs, MWCNT | NiCo-MOF/CNTs/MWCNT/PDMS | Glucose | Amperometry | 6.78 μM | [124] | |
ZIF-8 | Au NPs | Glucose oxidase/Au NPs/ZIF-8/GCE | Glucose | Amperometry | 50 nM | [131] |
ZIF-8 | Tyrosinase/ZIF-8 NPs/GO/Au SPE | Levodopa drug | Amperometry | 0.45 μM | [64] | |
ZIF-67 | ZIF-67 derived NiCo LDH | ZIF-67 derived NiCo LDH nanocage/SPCE | Lactate | Amperometry | 0.399 mM | [128] |
ZIF-67, Ag NPs | ZIF-67/Ag NPs/PDA/GCE | Cl- | DPV | 1 mM | [41] | |
Zn-TCPP-MOF | Zn-TCPP- MOF, MWCNT | Zn-TCPP- MOF nanosheets/MWCNT/SPPE | Ascorbic acid | PEC | 3.61 μM | [62] |
MOF | NPs | Electrode Material | Analyte | Role of MOF | Electrochemical Technique | LOD | Ref |
---|---|---|---|---|---|---|---|
Co-MOF | Co-MOF | Co-MOF/CC | Uric acid | Electrocatalyst | DPV | 7 nM | [152] |
Cu-MOF | Cu-BTC | Cu-BTC MOF/CPE | Uric acid | Electrocatalyst | DPV | 0.2 μM | [153] |
Cu-MOF | Cu-TCPP | Cu-TCPP MOF/GCE | Uric acid | Electrocatalyst | CV | 0.03 μM | [154] |
DPV | 1.37 μM | ||||||
Amperometry | 0.3 μM | ||||||
Photoelectrochemical | 0.01 μM | ||||||
Cu-MOF | Ni | Ni NPs/Cu-MOF-C/GCE | Glucose | Electrocatalyst | Amperometry | 0.090 μM | [55] |
Cu-MOF | Pt | Pt NPs/Cu-MOF/Au electrode | Glucose | Electrocatalyst | DPV | 0.06 mM | [155] |
CuCO-MOF | CuCO-MOF | CuCO MOF/CC | Glucose | Electrocatalyst | Amperometry | 0.27 μM | [156] |
CuCo-MOF | CuO | CuCo-BTC derivative/CC | Glucose | Electrocatalyst | Amperometry | 0.09 μM | [158] |
CuCo-MOF | Cu | Cu/CuCo MOF | Glucose | Electrocatalyst | Amperometry | 0.27 μM | [157] |
MnCo-MOF-74 | MnCo | Co/MnO/hierarchical carbon/GCE | Glucose | Electrocatalyst | Amperometry | 1.31 μM | [162] |
Nb-MOF | Nb(BTC) MOF, CNF | Nb(BTC) MOF/CNF/GCE | Uric acid | Electrocatalyst | DPV | 70 nM | [165] |
Ni-MOF | Ni-MOF | Ni-MOF/Pt electrode | Lactate | Electrocatalyst | Amperometry | 5 μM | [166] |
Ni-MOF | Ni-MOF | Ni-MOF nanosheet/GCE | Glucose | Electrocatalyst | Amperometry | 0.6 μM | [167] |
Ni-MOF | Ni-MOF | CLS/Ni-MOF/GCE | Glucose | Electrocatalyst | Amperometry | 0.4 μM | [168] |
Ni-MOF | Ni | Ni/C/graphene | Glucose | Electrocatalyst | Amperometry | 0.6 μM | [169] |
Ni-MOF | Au | Au/Ni-MOF/GCE | Uric acid | Electrocatalyst | DPV | 5.6 μM | [170] |
Ni-MOF | CNTs | CNTs/Ni-MOF/GCE | Glucose | Electrocatalyst | Amperometry | 0.82 μM | [20] |
Ni-MOF-74 | Ni2P/C | Ni2P/C/GCE | Uric acid | Electrocatalyst | DPV | 70 nM | [171] |
Ni-MOF | Ni-P | Ni-P/Ni foam | Glucose | Electrocatalyst | Amperometry | 0.15 μM | [38] |
Ni-CO MOF | SnS2, Ni-CO MOF, Au | BSA/anti-cortisol (C-Mab)/Au NPs/SnS2/Ni-CO MOF | Cortisol | Providing active sites for the deposition of Au NPs | SWV | 29 fg/mL | [50] |
Ni-Mn MOF | Ni-Mn MOF | Ni-Mn LDH MOF/GCE | Glucose | Electrocatalyst | Amperometry | 0.87 μM | [175] |
ZIF | Zn, Co | Co-N/Zn nanoporous carbon/GCE | Ascorbic acid | Electrocatalyst | DPV | 7.65 nM | [177] |
Uric acid | 0.21 nM | ||||||
ZIF-8 | Pt | ZIF-8/Pt NPs/GCE | Uric acid | Distribution of Pt NPs in the porous carbon | DPV | 5 μM | [178] |
ZIF-67 | Co, C, ZnO | Co-NCF/ZnO/GCE | Lactic acid | Electrocatalyst | Amperometry | 13.7 μM | [179] |
ZIF-67 | ZIF-67 derived NiCo LDH, cobalt carbonate | ZIF-67 derived NiCo LDH/cobalt carbonate/CC | Glucose | Electrocatalyst | Amperometry | 110 nM | [180] |
ZIF-8/ZIF-67 | ZIF-8/ZIF-67, Co | ZIF-8/ZIF-67/GCE | Uric acid | Electrocatalyst | DPV | 0.83 μM | [176] |
Zn-MOF | Zn-MOF | Ce/Zn-MOF/GCE | Uric acid | Electrocatalyst | DPV | 0.51 ng/mL | [181] |
Zr-MOF | ZrO2 | ZrO2 porous carbon/GCE | Uric acid | Electrocatalyst | DPV | 0.1 μM | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, J.; Zahran, M.; Li, X. Metal–Organic Framework-Based Nanostructures for Electrochemical Sensing of Sweat Biomarkers. Biosensors 2024, 14, 495. https://doi.org/10.3390/bios14100495
Meng J, Zahran M, Li X. Metal–Organic Framework-Based Nanostructures for Electrochemical Sensing of Sweat Biomarkers. Biosensors. 2024; 14(10):495. https://doi.org/10.3390/bios14100495
Chicago/Turabian StyleMeng, Jing, Moustafa Zahran, and Xiaolin Li. 2024. "Metal–Organic Framework-Based Nanostructures for Electrochemical Sensing of Sweat Biomarkers" Biosensors 14, no. 10: 495. https://doi.org/10.3390/bios14100495
APA StyleMeng, J., Zahran, M., & Li, X. (2024). Metal–Organic Framework-Based Nanostructures for Electrochemical Sensing of Sweat Biomarkers. Biosensors, 14(10), 495. https://doi.org/10.3390/bios14100495