Molecular Insights into Sex and Evolution

A special issue of Biomolecules (ISSN 2218-273X). This special issue belongs to the section "Molecular Genetics".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 8281

Special Issue Editors


E-Mail Website
Guest Editor
Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
Interests: genetics: sex chromosome evolution and speciation

E-Mail Website
Guest Editor
Department of Biosciences, School of Science, Kitasato University, Sagamihara 252-0373, Japan
Interests: evolutionary biology: sex determination and genome evolution

Special Issue Information

Dear Colleagues,

Sexual reproduction is a unique invention of the evolution of eukaryote life, different to that of prokaryotes. This sexual reproduction system has largely contributed to the production of eukaryote biodiversity by means of combining and shuffling genomes among different individuals, and this process continues to see itself diversified during evolution. Therefore, sex and evolution in eukaryotes are tightly linked to each other. Nevertheless, the sexual reproduction system remains a significant issue that warrants uncovering on the molecular level, specifically concerning genetic mechanisms. Therefore, we have launched a Special Issue entitled “Molecular Insights into Sex and evolution”, and we are pleased to invite you to submit your manuscripts. Research areas may include (but are not limited to) sex determination, sex chromosome evolution, reproduction, hybridization, speciation, and phylogenetic evolution. In this Special Issue, original research articles and reviews are welcome. Moreover, our aim is to unveil the genetic mechanisms of sex and evolution and understand the evolutionary reasons as to why sexual systems are as malleable and diverse as they are. 

We look forward to receiving your contributions.

Prof. Dr. Ikuo Miura
Dr. Michihiko Ito
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomolecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sex determination
  • sex chromosome evolution
  • reproduction
  • hybridization
  • speciation
  • evolution
  • animals
  • vertebrates

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

29 pages, 4533 KiB  
Article
Insights into Solea senegalensis Reproduction Through Gonadal Tissue Methylation Analysis and Transcriptomic Integration
by Daniel Ramírez, Marco Anaya-Romero, María Esther Rodríguez, Alberto Arias-Pérez, Robert Mukiibi, Helena D’Cotta, Diego Robledo and Laureana Rebordinos
Biomolecules 2025, 15(1), 54; https://doi.org/10.3390/biom15010054 - 2 Jan 2025
Viewed by 959
Abstract
Fish exhibit diverse mechanisms of sex differentiation and determination, shaped by both external and internal influences, often regulated by distinct DNA methylation patterns responding to environmental changes. In S. senegalensis aquaculture, reproductive issues in captivity pose significant challenges, particularly the lack of fertilization [...] Read more.
Fish exhibit diverse mechanisms of sex differentiation and determination, shaped by both external and internal influences, often regulated by distinct DNA methylation patterns responding to environmental changes. In S. senegalensis aquaculture, reproductive issues in captivity pose significant challenges, particularly the lack of fertilization capabilities in captive-bred males, hindering genetic improvement measures. This study analyzed the methylation patterns and transcriptomic profiles in gonadal tissue DNA from groups differing in rearing conditions and sexual maturity stages. RRBS (Reduced Representation Bisulfite Sequencing) was employed to detect notable methylation variations across groups, while RNA was extracted and sequenced for differential expression analysis. Our findings suggest that DNA methylation significantly regulates gene expression, acting as a mechanism that can both repress and enhance gene expression depending on the genomic context. The complexity of this epigenetic mechanism is evident from the varying levels of methylation and correlation rates observed in different CpGs neighboring specific genes linked to reproduction. Differential methylation comparisons revealed the highest number of differently methylated CpGs between maturation stages, followed by rearing conditions, and lastly between sexes. These findings underscore the crucial role of methylation in regulating gene expression and its potential role in sex differentiation, highlighting the complex interplay between epigenetic modifications and gene expression. Full article
(This article belongs to the Special Issue Molecular Insights into Sex and Evolution)
Show Figures

Figure 1

16 pages, 7244 KiB  
Article
Disruption of Sex-Linked Sox3 Causes ZW Female-to-Male Sex Reversal in the Japanese Frog Glandirana rugosa
by Ikuo Miura, Yoshinori Hasegawa, Michihiko Ito, Tariq Ezaz and Mitsuaki Ogata
Biomolecules 2024, 14(12), 1566; https://doi.org/10.3390/biom14121566 - 9 Dec 2024
Viewed by 6826
Abstract
Sox3 is an ancestral homologous gene of the male-determining Sry in eutherian mammals and determines maleness in medaka fish. In the Japanese frog, Glandirana rugosa, Sox3 is located on the Z and W chromosomes. To assess the sex-determining function of Sox3 in [...] Read more.
Sox3 is an ancestral homologous gene of the male-determining Sry in eutherian mammals and determines maleness in medaka fish. In the Japanese frog, Glandirana rugosa, Sox3 is located on the Z and W chromosomes. To assess the sex-determining function of Sox3 in this frog, we investigated its expression in gonads during early tadpole development and conducted genome-editing experiments. We found that the Sox3 mRNA levels in the gonads/mesonephroi were much higher in ZW females than that in ZZ males, and that the W-borne allele was dominantly expressed. A higher expression in ZW females preceded the onset of the sexually dimorphic expression of other autosomal sex differentiation genes. The Sox3 protein was detected by immunostaining in the somatic cells of early tadpole gonads around the boundary between the medulla and cortex in ZW females, whereas it was outside the gonads in ZZ males. Disrupting Sox3 using TALEN, which targets two distinct sites, generated sex-reversed ZW males and hermaphrodites, whereas no sex reversal was observed in ZZ males. These results suggest that the sex-linked Sox3 is involved in female determination in the ZZ-ZW sex-determining system of the frog, an exact opposite function to the male determination of medaka Sox3y and eutherian Sry. Full article
(This article belongs to the Special Issue Molecular Insights into Sex and Evolution)
Show Figures

Graphical abstract

Back to TopTop