Monogastric Animals Nutrition: From Molecular Nutrition to Prevention of Disease

A special issue of Biology (ISSN 2079-7737). This special issue belongs to the section "Zoology".

Deadline for manuscript submissions: closed (31 August 2023) | Viewed by 8431

Special Issue Editors

State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Interests: environmental stress; health breeding; metabolic diseases; ammonia; meat quality; antibiotics alternatives
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
Interests: vrology; immunology, food allergy

E-Mail
Guest Editor Assistant
State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Interests: gut microbiota; dysbiosis; gut health; metabolism; metabolites; nutrition

Special Issue Information

Dear Colleagues,

We are pleased to invite you to contribute to this Special Issue. There is growing interest in monogastric nutrition (also as a classic animal model for human health and diseases), gut microbiota and its derived metabolites. The gut plays a central role in the process of digestion and absorption of nutrients. The gut microbes within the gut lumen environment is known as one of the key elements contributing to the regulation of host health. The dysbiosis of gut homeostasis and intestinal microbiota influenced by nurient factors lead to metabolic diseases including obesity and non-alcoholic fatty liver disease. A variety of bioactive compounds with anti-inflammatory, antioxidative and anti-bacterial effects have functions to the host physiology. The purpose of this Special Issue is to collect what is known and recent progress of gut microbiota and its derived metabolites, and how they regulate host metabolism of nutrients. In addition, the treatment and prevention functions of bioactive compounds are also our concern. In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • monogastric animal;
  • molecular nutrition;
  • intestinal inflammation;
  • oxidative stress;
  • bioactive compounds;
  • gut microbiota;
  • metabolites.

We look forward to receiving your contributions.

Dr. Bao Yi
Dr. Jiazeng Sun
Guest Editors

Hui Han
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • monogastric animals
  • molecular nutrition
  • intestinal inflammation
  • oxidative stress
  • gut microbiota
  • metabolites

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 3508 KiB  
Article
The New Buffer Salt-Protected Sodium Butyrate Promotes Growth Performance by Improving Intestinal Histomorphology, Barrier Function, Antioxidative Capacity, and Microbiota Community of Broilers
by Mebratu Melaku, Dan Su, Huaibao Zhao, Ruqing Zhong, Teng Ma, Bao Yi, Liang Chen and Hongfu Zhang
Biology 2024, 13(5), 317; https://doi.org/10.3390/biology13050317 - 1 May 2024
Viewed by 572
Abstract
In this study, a commercial sodium butyrate protected by a new buffer salt solution (NSB) was tested to determine whether it can be used as an antibiotic alternative in broiler production. A total of 192 1-day-old broilers were randomly allocated to three dietary [...] Read more.
In this study, a commercial sodium butyrate protected by a new buffer salt solution (NSB) was tested to determine whether it can be used as an antibiotic alternative in broiler production. A total of 192 1-day-old broilers were randomly allocated to three dietary treatments: soybean meal diet (CON), antibiotic diet (ANT, basal diet + 100 mg/kg aureomycin), and NSB (basal diet + 800 mg/kg NSB). The growth performance, serum anti-inflammatory cytokines, intestinal morphology, gut barrier function, antioxidative parameters, SCFAs’ content, and cecal microbiota were analyzed. The result showed that NSB significantly improved ADFI and ADG (p < 0.01), and decreased FCR (p < 0.01). Serum anti-inflammatory cytokine IL-10 was up-regulated (p < 0.01), and pro-inflammatory TNF-α was down-regulated (p < 0.05) by NSB supplementation. H&E results showed that VH and the VH/CD ratio significantly increased (p < 0.05) in the jejunum and ileum in the NSB group. Furthermore, ZO-1 (p < 0.01), claudin-1 (p < 0.01), and occludin (p < 0.05) in the jejunum and claudin-1 (p < 0.01) and mucin-2 (p < 0.05) in the ileum were significantly up-regulated in the NSB group. Additionally, SOD (p < 0.05) and the T-AOC/MDA ratio (p < 0.01) in the jejunum and SOD in the ileum were significantly increased (p < 0.05) in the NSB group. The MDA level also significantly increased (p < 0.01) in the ANT group in the jejunum. Propionic acid (p < 0.05) and butyric acid (p < 0.01) content significantly increased in the NSB group in the jejunum and ileum segments. The 16S rRNA sequencing results showed no significant difference (p > 0.05) in alpha and beta diversity among the groups. LEFSe analysis also indicated that Peptostreptococcaceae, Colidextribacter, Firmicutes, Oscillospira, and Erysipelatoclostridiaceae, which promote SCFA production (p < 0.05), were identified as dominant taxon-enriched bacterial genera in the NSB group. The Spearman correlation analysis revealed that Colidextribacter with ADFI, ADG, VH, claudin-1 (p < 0.05), and unclassified_f__Peptostreptococcaceae with ADFI, IL-10, and ZO-1 were positively correlated (p < 0.05). Furthermore, ADFI and ADG with IL-10, claudin-1, SOD, T-AOC, and butyric acid (p < 0.05), and similarly, ADG with VH (p < 0.05), showed a positive correlation. In conclusion, NSB enhanced the growth performance by improving jejunum and ileum morphology, and serum anti-inflammatory cytokines, and by regulating the intestinal barrier function and antioxidant capacity, SCFAs’ content, and cecum microbiota, showing its potential use as an alternative to antibiotics in poultry nutrition. Full article
Show Figures

Figure 1

13 pages, 2629 KiB  
Article
Effect of Sugar Beet Pulp on the Composition and Predicted Function of Equine Fecal Microbiota
by Tamara Ford, Zachary L. McAdams, Kile S. Townsend, Lynn M. Martin, Philip J. Johnson and Aaron C. Ericsson
Biology 2023, 12(9), 1254; https://doi.org/10.3390/biology12091254 - 19 Sep 2023
Cited by 1 | Viewed by 2779
Abstract
The purpose of this study is to determine the effect of the partial replacement of dietary hay with sugar beet pulp (SBP) on the composition and predicted function of the fecal microbiota of healthy adult horses. Fecal samples were collected daily for 12 [...] Read more.
The purpose of this study is to determine the effect of the partial replacement of dietary hay with sugar beet pulp (SBP) on the composition and predicted function of the fecal microbiota of healthy adult horses. Fecal samples were collected daily for 12 days from six adult horses after removal from pasture, including a five-day acclimation period, and a seven-day period following the introduction of SBP into their diet, and compared to six untreated horses over a comparable period. Fecal DNA was subjected to 16S rRNA amplicon sequencing and a longitudinal analysis was performed comparing the composition and predicted function. While no significant treatment-associated changes in the richness, alpha diversity, or beta diversity were detected, random forest regression identified several high-importance taxonomic features associated with change over time in horses receiving SBP. A similar analysis of the predicted functional pathways identified several high-importance pathways, including those involved in the production of L-methionine and butyrate. These data suggest that feeding SBP to healthy adult horses acutely increases the relative abundance of several Gram-positive taxa, including Cellulosilyticum sp., Moryella sp., and Weissella sp., and mitigates the predicted functional changes associated with removal from pasture. Large-scale studies are needed to assess the protective effect of SBP on the incidence of the gastrointestinal conditions of horses. Full article
Show Figures

Graphical abstract

13 pages, 2162 KiB  
Article
Stimbiotics Supplementation Promotes Growth Performance by Improving Plasma Immunoglobulin and IGF-1 Levels and Regulating Gut Microbiota Composition in Weaned Piglets
by Wenning Chen, Chenggang Yin, Jing Li, Wenjuan Sun, Yanpin Li, Chengwei Wang, Yu Pi, Gustavo Cordero, Xilong Li and Xianren Jiang
Biology 2023, 12(3), 441; https://doi.org/10.3390/biology12030441 - 13 Mar 2023
Cited by 4 | Viewed by 1895
Abstract
This study was conducted to investigate the effects of dietary supplementation with stimbiotics (STB) on growth performance, diarrhoea incidence, plasma antioxidant capacity, immunoglobulin concentration and hormone levels, and faecal microorganisms in weaned piglets. Compared with the control (CT) group, the addition of STB [...] Read more.
This study was conducted to investigate the effects of dietary supplementation with stimbiotics (STB) on growth performance, diarrhoea incidence, plasma antioxidant capacity, immunoglobulin concentration and hormone levels, and faecal microorganisms in weaned piglets. Compared with the control (CT) group, the addition of STB improved the body weight (BW) of piglets on days 28 and 42 (p < 0.05) and increased daily weight gain and daily feed intake from days 14–28 and throughout the trial period (p < 0.05). Correspondingly, the plasma insulin-like growth factor 1 (IGF-1) level on day 42 was significantly improved by STB (p < 0.05). VistaPros (VP) group levels of immunoglobulin (Ig) A and G were significantly higher on days 14 and 42 (p < 0.05) than the CT group levels. In addition, the activity of plasma catalase tended to be increased on day 14 (p = 0.053) in the VP group, as for superoxide dismutase, glutathione peroxidase, and malondialdehyde, STB did not significantly affect their levels (p > 0.05). Moreover, dietary STB increased the relative abundance of beneficial bacteria, including norank_f_Muribaculaceae, Rikenellaceae_RC9_gut_group, Parabacteroides, and unclassified_f__Oscillospiraceae. In summary, STB improved the immunity and IGF-1 levels in the plasma of weaned piglets and consequently promoted the growth performance of weaned piglets. Full article
Show Figures

Figure 1

15 pages, 4284 KiB  
Article
Dietary Supplementation with Probiotic Bacillus licheniformis S6 Improves Intestinal Integrity via Modulating Intestinal Barrier Function and Microbial Diversity in Weaned Piglets
by Wenjuan Sun, Wenning Chen, Kun Meng, Long Cai, Guiguan Li, Xilong Li and Xianren Jiang
Biology 2023, 12(2), 238; https://doi.org/10.3390/biology12020238 - 2 Feb 2023
Cited by 9 | Viewed by 2446
Abstract
Bacillus licheniformis (B. Licheniformis) has been considered to be an effective probiotic to maintain gut health and boost productivity in the pig industry, but there is no complete understanding of its mechanisms. We determined whether weaned piglets exposed to BL−S6 [...] Read more.
Bacillus licheniformis (B. Licheniformis) has been considered to be an effective probiotic to maintain gut health and boost productivity in the pig industry, but there is no complete understanding of its mechanisms. We determined whether weaned piglets exposed to BL−S6 (probiotic) had altered intestinal barrier function or microbiota composition. In our study, 108 weaned piglets (54 barrows and 54 gilts) were divided equally into three groups, each with six pens and six piglets/pen, and fed a basal diet supplemented without or with antibiotic (40 g/t of Virginiamycin and 500 g/t of Chlortetracycline) or probiotic (1000 g/t of B. Licheniformis) for a 14-day trial. On day 14, one piglet was chosen from each pen to collect blood and intestinal samples. Compared with the control group, dietary supplementation with a probiotic promoted body weight (BW) gain and average daily gains (ADG) while reducing diarrhea incidence (p < 0.05). Probiotics enhanced superoxidase dismutase (SOD) activity and decreased malondialdehyde (MDA) levels in serum (p < 0.05), and increased the level of mRNA expression of SOD1, Nrf2, and HO-1 (p < 0.05) in the jejunum mucosa. Moreover, supplementation with probiotics improved intestinal mucosal integrity as evidenced by higher villus heights and a higher ratio of villus heights to crypt depths (duodenum and jejunum) and higher mRNA and protein levels of occludin and ZO-1 in jejunum mucosa (p < 0.05). The intestinal sIgA levels (p < 0.05) were elevated in the probiotic group, and that of serum immunoglobulin A (IgA) tended to be higher (p = 0.09). Furthermore, weaning piglets who were given probiotics had a better balance of the cecum microbiota, with lactobacillus abundance increased and clostridium_sensu_stricto_1 abundance decreased. In conclusion, dietary supplementation with the probiotic BL−S6 promoted intestinal integrity, which was associated, in part, with modulating intestinal barrier function and microbial diversity in weaned piglets; it may offer a promising alternative to antibiotics to prevent diarrhea. Full article
Show Figures

Figure 1

Back to TopTop