Topical Collection "Nanoparticles for Therapeutic and Diagnostic Applications"

Editor

Guest Editor
Dr. Wassana Yantasee

Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States; President/CEO, PDX Pharmaceuticals, Portland, Oregon, United States
Website 1 | Website 2 | E-Mail
Interests: nanomedicine; RNAi; drug delivery; nanobiotechnology; cancer; fibrosis; metal chelation; pharmaceutical; immunotherapy

Topical Collection Information

Dear Colleagues,

Nanoparticles have garnered intense interest as a therapeutic platform to treat a broad range of diseases, including cancer, metabolic, cardiovascular, skin, renal, inflammatory, and infectious disease. Well-designed nanoparticles can enhance the efficacy of traditional therapeutics through enhanced solubility, prolonged circulation or drug release, targeted delivery to disease sites, and reduced toxicity. Nanoparticles can be formulated for systemic, dermal, oral, and inhalation applications and optimized to overcome the delivery barriers of emerging therapeutics such as oligonucleotides, mRNA, and DNA with the potential to be safer than viral vector counterparts. Nevertheless, like any emerging technology, further advances in research are required to overcome the technological and regulatory barriers if nanoparticles are to fulfil their immense potential for human applications.

In order to offer a publication platform for researchers working in the nanotherapeutic field, the MDPI journal, Bioengineering, is dedicating a Topical Collection to Nanoparticles in Therapeutic Applications and is asking for your valuable contribution. The Issue will focus on nanoparticle development and applications in broad ranges of diseases and delivery routes. Research toward increased understanding of pharmacokinetics, pharmacodynamics, toxicity, stability, and manufacturability of nanoparticles is also highly relevant.

We look forward to receiving your contributions to this Issue of Bioengineering.

Assoc. Prof. Wassana Yantasee
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Bioengineering is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 550 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (2 papers)

2019

Jump to: 2018

Open AccessCommunication Lanthanide-Loaded Nanoparticles as Potential Fluorescent and Mass Probes for High-Content Protein Analysis
Bioengineering 2019, 6(1), 23; https://doi.org/10.3390/bioengineering6010023
Received: 11 February 2019 / Revised: 4 March 2019 / Accepted: 7 March 2019 / Published: 15 March 2019
PDF Full-text (1268 KB) | HTML Full-text | XML Full-text
Abstract
Multiparametric and high-content protein analysis of single cells or tissues cannot be accomplished with the currently available flow cytometry or imaging techniques utilizing fluorophore-labelled antibodies, because the number of spectrally resolvable fluorochromes is limited. In contrast, mass cytometry can resolve more signals by [...] Read more.
Multiparametric and high-content protein analysis of single cells or tissues cannot be accomplished with the currently available flow cytometry or imaging techniques utilizing fluorophore-labelled antibodies, because the number of spectrally resolvable fluorochromes is limited. In contrast, mass cytometry can resolve more signals by exploiting lanthanide-tagged antibodies; however, only about 100 metal reporters can be attached to an antibody molecule. This makes the sensitivity of lanthanide-tagged antibodies substantially lower than fluorescent reporters. A new probe that can carry more lanthanide molecules per antibody is a desirable way to enhance the sensitivity needed for the detection of protein with low cellular abundance. Herein, we report on the development of new probes utilizing mesoporous silica nanoparticles (MSNPs) with hydroxyl, amine, or phosphonate functional groups. The phosphonated MSNPs proved to be best at loading lanthanides for up to 1.4 × 106 molecules per particle, and could be loaded with various lanthanide elements (Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu) at relatively similar molar extents. The modified MSNPs can also load a fluorescent dye, allowing bimodal mass and fluorescence-based detection. We achieved specificity of antibody-conjugated nanoparticles (at 1.4 × 103 antibodies per nanoparticle) for targeting proteins on the cell surface. The new materials can potentially be used as mass cytometry probes and provide a method for simultaneous monitoring of a large host of factors comprising the tumor microenvironment (e.g., extracellular matrix, cancer cells, and immune cells). These novel probes may also benefit personalized medicine by allowing for high-throughput analysis of multiple proteins in the same specimen. Full article
Figures

Figure 1

2018

Jump to: 2019

Open AccessArticle GSK461364A, a Polo-Like Kinase-1 Inhibitor Encapsulated in Polymeric Nanoparticles for the Treatment of Glioblastoma Multiforme (GBM)
Bioengineering 2018, 5(4), 83; https://doi.org/10.3390/bioengineering5040083
Received: 17 August 2018 / Revised: 4 October 2018 / Accepted: 6 October 2018 / Published: 9 October 2018
Cited by 1 | PDF Full-text (7110 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Glioblastoma Multiforme (GBM) is a common primary brain cancer with a poor prognosis and a median survival of less than 14 months. Current modes of treatment are associated with deleterious side effects that reduce the life span of the patients. Nanomedicine enables site-specific [...] Read more.
Glioblastoma Multiforme (GBM) is a common primary brain cancer with a poor prognosis and a median survival of less than 14 months. Current modes of treatment are associated with deleterious side effects that reduce the life span of the patients. Nanomedicine enables site-specific delivery of active pharmaceutical ingredients and facilitates entrapment inside the tumor. Polo-like kinase 1 (PLK-1) inhibitors have shown promising results in tumor cells. GSK461364A (GSK) is one such targeted inhibitor with reported toxicity issues in phase 1 clinical trials. We have demonstrated in our study that the action of GSK is time dependent across all concentrations. There is a distinct 15−20% decrease in cell viability via apoptosis in U87-MG cells dosed with GSK at low concentrations (within the nanomolar and lower micromolar range) compared to higher concentrations of the drug. Additionally, we have confirmed that PLGA-PEG nanoparticles (NPs) containing GSK have shown significant reduction in cell viability of tumor cells compared to their free equivalents. Thus, this polymeric nanoconstruct encapsulating GSK can be effective even at low concentrations and could improve the effectiveness of the drug while reducing side effects at the lower effective dose. This is the first study to report a PLK-1 inhibitor (GSK) encapsulated in a nanocarrier for cancer applications. Full article
Figures

Figure 1

Bioengineering EISSN 2306-5354 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top