Stochastic Electrodynamics

A special issue of Atoms (ISSN 2218-2004).

Deadline for manuscript submissions: closed (15 April 2019) | Viewed by 36254

Special Issue Editor


E-Mail Website
Guest Editor
University of Nebraska - Lincoln, Jorgensen Hall, Lincoln, NE 68588, USA
Interests: quantum mechanics; electromagnetic interactions

Special Issue Information

Dear Colleague,

The purpose of this Special Issue is to promote physical insights that have been attained by researchers using and developing the theory of Stochastic Electrodynamics, from various perspectives, and to provide a platform that stimulates discussion, helps disseminate results and promote further work.

The “SED2018” meeting intends to include reviews on several topics on SED to assist newer members of this community, as well as the presentation of new results and discussions of the challenges met by the theory and of experimental avenues that may test ideas inspired by it.

Prof. Herman Batelaan
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atoms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1500 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 454 KiB  
Article
From Stochastic Optics to the Wigner Formalism: The Role of the Vacuum Field in Optical Quantum Communication Experiments
by Alberto Casado, Santiago Guerra and José Plácido
Atoms 2019, 7(3), 76; https://doi.org/10.3390/atoms7030076 - 7 Aug 2019
Cited by 6 | Viewed by 3096
Abstract
The Wigner formalism in the Heisenberg picture constitutes a bridge that connects Quantum Optics to Stochastic Optics. The vacuum field appears explicitly in the formalism, and the wavelike aspects of light are emphasised. In addition, the zeropoint intensity as a threshold for detection [...] Read more.
The Wigner formalism in the Heisenberg picture constitutes a bridge that connects Quantum Optics to Stochastic Optics. The vacuum field appears explicitly in the formalism, and the wavelike aspects of light are emphasised. In addition, the zeropoint intensity as a threshold for detection is a common denominator in both theories. In this paper, after summarising the basic rules of the Wigner approach and its application to parametric down-conversion, some new results are presented that delve into the physical meaning of the zeropoint field in optical quantum communication. Specifically, the relationship between Bell-state distinguishability and the number of sets of zeropoint modes that take part in the experiment is analysed in terms of the coupling between the phases of the different fields involved and the subtraction of the zeropoint intensity at the detectors. Additionally, the connection between the compatibility theorem in quantum cryptography and zeropoint field is stressed. Full article
(This article belongs to the Special Issue Stochastic Electrodynamics)
Show Figures

Figure 1

10 pages, 276 KiB  
Article
Stochastic Electrodynamics: Lessons from Regularizing the Harmonic Oscillator
by Theodorus Maria Nieuwenhuizen
Atoms 2019, 7(2), 59; https://doi.org/10.3390/atoms7020059 - 10 Jun 2019
Cited by 5 | Viewed by 2913
Abstract
In this paper, the harmonic oscillator problem in Stochastic Electrodynamics is revisited. Using the exact shape of the Lorentz damping term prevents run-away effects. After introducing a cut-off in the stochastic power spectrum and regularizing the stochastic force, all relevant integrals are dominated [...] Read more.
In this paper, the harmonic oscillator problem in Stochastic Electrodynamics is revisited. Using the exact shape of the Lorentz damping term prevents run-away effects. After introducing a cut-off in the stochastic power spectrum and regularizing the stochastic force, all relevant integrals are dominated by resonance effects only and results are derived that stem from those in the quantum ground state. For an orbit with specific position and momentum at an initial time, the average energy and the average rate of energy change are evaluated, which stem with each other. Resonance effects are highlighted along the way. An outlook on the hydrogen ground state problem is provided. Full article
(This article belongs to the Special Issue Stochastic Electrodynamics)
18 pages, 3680 KiB  
Article
Extraction of Zero-Point Energy from the Vacuum: Assessment of Stochastic Electrodynamics-Based Approach as Compared to Other Methods
by Garret Moddel and Olga Dmitriyeva
Atoms 2019, 7(2), 51; https://doi.org/10.3390/atoms7020051 - 23 May 2019
Cited by 2 | Viewed by 10277
Abstract
In research articles and patents several methods have been proposed for the extraction of zero-point energy from the vacuum. None of the proposals have been reliably demonstrated, yet they remain largely unchallenged. In this paper the underlying thermodynamics principles of equilibrium, detailed balance, [...] Read more.
In research articles and patents several methods have been proposed for the extraction of zero-point energy from the vacuum. None of the proposals have been reliably demonstrated, yet they remain largely unchallenged. In this paper the underlying thermodynamics principles of equilibrium, detailed balance, and conservation laws are presented for zero-point energy extraction. The proposed methods are separated into three classes: nonlinear processing of the zero-point field, mechanical extraction using Casimir cavities, and the pumping of atoms through Casimir cavities. The first two approaches are shown to violate thermodynamics principles, and therefore appear not to be feasible, no matter how innovative their execution. The third approach, based upon stochastic electrodynamics, does not appear to violate these principles, but may face other obstacles. Initial experimental results are tantalizing but, given the lower than expected power output, inconclusive. Full article
(This article belongs to the Special Issue Stochastic Electrodynamics)
Show Figures

Figure 1

14 pages, 274 KiB  
Article
Energy Considerations of Classical Electromagnetic Zero-Point Radiation and a Specific Probability Calculation in Stochastic Electrodynamics
by Daniel C. Cole
Atoms 2019, 7(2), 50; https://doi.org/10.3390/atoms7020050 - 21 May 2019
Cited by 3 | Viewed by 3106
Abstract
The zero-point (ZP) radiation field in stochastic electrodynamics (SED) is considered to be formally infinite, or perhaps bounded by mechanisms yet to be revealed someday. A similar situation holds in quantum electrodynamics (QED), although there the ZP field is considered to be “virtual”. [...] Read more.
The zero-point (ZP) radiation field in stochastic electrodynamics (SED) is considered to be formally infinite, or perhaps bounded by mechanisms yet to be revealed someday. A similar situation holds in quantum electrodynamics (QED), although there the ZP field is considered to be “virtual”. The first part of this article addresses the concern by some about the related disturbing concept of “extracting energy” from this formally, enormous source of energy. The second part of this article introduces a new method for calculating probabilities of fields in SED, which can be extended to linear oscillators in SED. Full article
(This article belongs to the Special Issue Stochastic Electrodynamics)
8 pages, 298 KiB  
Article
CHSH-Type Inequality Involving Commuting Continuous Variables
by Andrea Valdés-Hernández, Ana María Cetto and Luis de la Peña
Atoms 2019, 7(2), 46; https://doi.org/10.3390/atoms7020046 - 25 Apr 2019
Viewed by 2555
Abstract
The correlation of projections of the momentum operators of two particles is used to derive a quantum inequality for continuous variables, which must be satisfied by any bipartite system in a pure state. This inequality resembles a Clauser–Horne–Shimony–Holt (CHSH)-type inequality except for additional [...] Read more.
The correlation of projections of the momentum operators of two particles is used to derive a quantum inequality for continuous variables, which must be satisfied by any bipartite system in a pure state. This inequality resembles a Clauser–Horne–Shimony–Holt (CHSH)-type inequality except for additional terms related to the imaginary component of the weak value of the momentum, which normally remains concealed in the usual quantum description but turns out to be of relevance for entangled states. Our results shed new light on the link between noncommutativity, entanglement and nonlocality of the quantum description. Full article
(This article belongs to the Special Issue Stochastic Electrodynamics)
12 pages, 696 KiB  
Article
The Role of Vacuum Fluctuations and Symmetry in the Hydrogen Atom in Quantum Mechanics and Stochastic Electrodynamics
by G. Jordan Maclay
Atoms 2019, 7(2), 39; https://doi.org/10.3390/atoms7020039 - 31 Mar 2019
Cited by 1 | Viewed by 3921
Abstract
Stochastic Electrodynamics (SED) has had success modeling black body radiation, the harmonic oscillator, the Casimir effect, van der Waals forces, diamagnetism, and uniform acceleration of electrodynamic systems using the stochastic zero-point fluctuations of the electromagnetic field with classical mechanics. However the hydrogen atom, [...] Read more.
Stochastic Electrodynamics (SED) has had success modeling black body radiation, the harmonic oscillator, the Casimir effect, van der Waals forces, diamagnetism, and uniform acceleration of electrodynamic systems using the stochastic zero-point fluctuations of the electromagnetic field with classical mechanics. However the hydrogen atom, with its 1/r potential remains a critical challenge. Numerical calculations have shown that the SED field prevents the electron orbit from collapsing into the proton, but, eventually the atom becames ionized. We look at the issues of the H atom and SED from the perspective of symmetry of the quantum mechanical Hamiltonian, used to obtain the quantum mechanical results, and the Abraham-Lorentz equation, which is a force equation that includes the effects of radiation reaction, and is used to obtain the SED simulations. We contrast the physical computed effects of the quantized electromagnetic vacuum fluctuations with the role of the real stochastic electromagnetic field. Full article
(This article belongs to the Special Issue Stochastic Electrodynamics)
Show Figures

Figure 1

14 pages, 801 KiB  
Article
Entanglement, Complementarity, and Vacuum Fields in Spontaneous Parametric Down-Conversion
by Ralf Menzel, Axel Heuer and Peter W. Milonni
Atoms 2019, 7(1), 27; https://doi.org/10.3390/atoms7010027 - 19 Feb 2019
Cited by 5 | Viewed by 4285
Abstract
Using two crystals for spontaneous parametric down-conversion in a parallel setup, we observe two-photon interference with high visibility. The high visibility is consistent with complementarity and the absence of which-path information. The observations are explained as the effects of entanglement or equivalently in [...] Read more.
Using two crystals for spontaneous parametric down-conversion in a parallel setup, we observe two-photon interference with high visibility. The high visibility is consistent with complementarity and the absence of which-path information. The observations are explained as the effects of entanglement or equivalently in terms of interfering probability amplitudes and also by the calculation of a second-order field correlation function in the Heisenberg picture. The latter approach brings out explicitly the role of the vacuum fields in the down-conversion at the crystals and in the photon coincidence counting. For comparison, we show that the Hong–Ou–Mandel dip can be explained by the same approach in which the role of the vacuum signal and idler fields, as opposed to entanglement involving vacuum states, is emphasized. We discuss the fundamental limitations of a theory in which these vacuum fields are treated as classical, stochastic fields. Full article
(This article belongs to the Special Issue Stochastic Electrodynamics)
Show Figures

Figure 1

Review

Jump to: Research

10 pages, 218 KiB  
Review
Stochastic Electrodynamics: The Closest Classical Approximation to Quantum Theory
by Timothy H. Boyer
Atoms 2019, 7(1), 29; https://doi.org/10.3390/atoms7010029 - 1 Mar 2019
Cited by 22 | Viewed by 4558
Abstract
Stochastic electrodynamics is the classical electrodynamic theory of interacting point charges which includes random classical radiation with a Lorentz-invariant spectrum whose scale is set by Planck’s constant. Here, we give a cursory overview of the basic ideas of stochastic electrodynamics, of the successes [...] Read more.
Stochastic electrodynamics is the classical electrodynamic theory of interacting point charges which includes random classical radiation with a Lorentz-invariant spectrum whose scale is set by Planck’s constant. Here, we give a cursory overview of the basic ideas of stochastic electrodynamics, of the successes of the theory, and of its connections to quantum theory. Full article
(This article belongs to the Special Issue Stochastic Electrodynamics)
Back to TopTop