CHSH-Type Inequality Involving Commuting Continuous Variables
Abstract
:1. Introduction
2. Flow and Diffusive Velocities
3. An Inequality Involving a CHSH-Type Operator for Continuous Variables
- ,
- .
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 1969, 23, 880–884. [Google Scholar] [CrossRef]
- Bell, J.S. Speakable and Unspeakable in Quantum Mechanics; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Gisin, N. Bell’s inequality holds for all non-product states. Phys. Lett. A 1991, 154, 201–202. [Google Scholar] [CrossRef]
- Valdés-Hernández, A.; de la Peña, L.; Cetto, A.M. Strong entanglement criterion involving momentum weak values. Phys. Lett. A 2018. [Google Scholar] [CrossRef]
- Aharonov, Y.; Albert, D.Z.; Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 1988, 60, 1351–1354. [Google Scholar] [CrossRef] [PubMed]
- Duck, I.M.; Stevenson, P.M.; Sudarshan, E.C.G. The sense in which a “weak measurement” of a spin-1/2 particle’s spin component yields a value 100. Phys. Rev. D 1989, 40, 2112–2117. [Google Scholar] [CrossRef]
- Nelson, E. Dynamical Theories of Brownian Motion; Princeton U. P.: Princeton, NJ, USA, 1966. [Google Scholar]
- de la Peña, L.; Cetto, A.M.; Valdés-Hernández, A. The Emerging Quantum. The Physics Behind Quantum Mechanics; Springer: Berlin, Germany, 2015. [Google Scholar]
- Leavens, C.R. Weak measurements from the point of view of bohmian mechanics. Found. Phys. 2005, 35, 469–491. [Google Scholar] [CrossRef]
- Wiseman, H.M. Grounding bohmian mechanics in weak values and bayesianism. New J. Phys. 2007, 9, 165–177. [Google Scholar] [CrossRef]
- Kocsis, S.; Braverman, B.; Ravets, S.; Stevens, M.J.; Mirin, R.P.; Shalm, L.K.; Steinberg, A.M. Observing the average trajectories of single photons in a two-slit interferometer. Science 2011, 332, 1170–1173. [Google Scholar] [CrossRef] [PubMed]
- Braverman, B.; Simon, C. Proposal to Observe the Nonlocality of Bohmian Trajectories with Entangled Photons. Phys. Rev. Lett. 2013, 110, 060406. [Google Scholar] [CrossRef] [PubMed]
- Traversa, F.L.; Albareda, G.; Di Ventra, M.; Oriols, X. Robust weak-measurement protocol for Bohmian velocities. Phys. Rev. A 2013, 87, 052124. [Google Scholar] [CrossRef]
- Mahler, D.H.; Rozema, L.; Fisher, K.; Vermeyden, L.; Resch, K.J.; Wiseman, H.M.; Steinberg, A. Experimental nonlocal and surreal Bohmian trajectories. Sci. Adv. 2016, 2, e1501466. [Google Scholar]
- Hiley, B.J. Weak values: Approach through the Clifford and Moyal algebras. J. Phys. Conf. Ser. 2012, 361, 012014. [Google Scholar] [CrossRef]
- Flack, R.; Hiley, B.J. Feynman Paths and Weak Values. Entropy 2018, 20, 367. [Google Scholar] [CrossRef]
- Dressel, J.; Malik, M.; Miatto, F.M.; Jordan, A.N.; Boyd, R.W. Colloquium: Understanding quantum weak values: Basics and applications. Rev. Mod. Phys. 2014, 86, 307. [Google Scholar] [CrossRef]
- Dressel, J.; Jordan, A.N. Significance of the imaginary part of the weak value. Phys. Rev. A 2012, 85, 012107. [Google Scholar] [CrossRef]
- Cohen, E.; Pollak, E. Determination of weak values of quantum operators using only strong measurements. Phys. Rev. A 2018, 98, 042112. [Google Scholar] [CrossRef]
- Dressel, J.; Jordan, A.N. Contextual-value approach to the generalized measurement of observables. Phys. Rev. A 2012, 85, 022123. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables I. Phys. Rev. 1952, 85, 166–179. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables II. Phys. Rev. 1952, 85, 180–193. [Google Scholar] [CrossRef]
- Holland, P.R. The Quantum Theory of Motion; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Nelson, E. Quantum Fluctuations; Princeton U. P.: Princeton, NJ, USA, 1985. [Google Scholar]
- de la Peña, L. New Formulation of Stochastic Theory and Quantum Mechanics. J. Math. Phys. 1969, 10, 1620. [Google Scholar] [CrossRef]
- de la Peña, L.; Cetto, A.M. Does quantum mechanics accept a stochastic support? Found. Phys. 1982, 12, 1017–1037. [Google Scholar] [CrossRef]
- Bohm, D.; Hiley, B.J. Non-locality and locality in the stochastic interpretation of quantum mechanics. Phys. Rep. 1989, 172, 93–122. [Google Scholar] [CrossRef]
- Takabayashi, T. On the Formulation of Quantum Mechanics associated with Classical Pictures. Prog. Theory Phys. 1952, 8, 143–182. [Google Scholar] [CrossRef]
- Hirschfelder, J.O.; Christoph, A.C.; Palke, W.E. Quantum mechanical streamlines. I. Square potential barrier. J. Chem. Phys. 1974, 61, 5435–5455. [Google Scholar] [CrossRef]
- Cirel’son, B.S. Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 1980, 4, 93–100. [Google Scholar] [CrossRef]
- Revzen, M.; Lokajícek, M.; Mann, A. Bell’s inequality and operators noncommutativity. Quantum Semiclass. Opt. 1997, 9, 501. [Google Scholar] [CrossRef]
- Landau, L.J. On the violation of Bell’s inequality in quantum theory. Phys. Lett. A 1987, 120, 54–56. [Google Scholar] [CrossRef]
- Fritz, T. Nonlocality with less complementarity. Phys. Rev. A 2012, 85, 022102. [Google Scholar] [CrossRef]
1 | Even if the expressions just discussed do not throw light on the origin of the quantum fluctuations—the important point here being that they exist—some words about this point seem advisable. The common stand is that the quantum fluctuations refer to an irreducible (noncausal) phenomenon, which makes it apparently unnecessary to go beyond the recognition of their existence. However, in different works a cause is proposed for them, which may differ from author to author. We recall in particular the proposal discussed in ref. [8] and references therein, where it is shown that the origin of the quantum fluctuations in atomic systems can be ascribed to their permanent interaction with the zero-point radiation field; this constitutes the causal, realistic and objective theory known as stochastic electrodynamics. |
2 | Notice that correlations of the form , witnessing P-entanglement, do not contribute explicitly to . |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valdés-Hernández, A.; Cetto, A.M.; de la Peña, L. CHSH-Type Inequality Involving Commuting Continuous Variables. Atoms 2019, 7, 46. https://doi.org/10.3390/atoms7020046
Valdés-Hernández A, Cetto AM, de la Peña L. CHSH-Type Inequality Involving Commuting Continuous Variables. Atoms. 2019; 7(2):46. https://doi.org/10.3390/atoms7020046
Chicago/Turabian StyleValdés-Hernández, Andrea, Ana María Cetto, and Luis de la Peña. 2019. "CHSH-Type Inequality Involving Commuting Continuous Variables" Atoms 7, no. 2: 46. https://doi.org/10.3390/atoms7020046
APA StyleValdés-Hernández, A., Cetto, A. M., & de la Peña, L. (2019). CHSH-Type Inequality Involving Commuting Continuous Variables. Atoms, 7(2), 46. https://doi.org/10.3390/atoms7020046