Atoms doi: 10.3390/atoms9030069

Authors: Oishi Morita Kato Murakami Sakaue Kawamoto Kawate Goto

Spectroscopic studies for emissions released from tungsten ions have been conducted in the Large Helical Device (LHD) for contribution to the tungsten transport study in tungsten divertor fusion devices and for expansion of the experimental database of tungsten line emissions. Tungsten ions are distributed in the LHD plasma by injecting a pellet consisting of a small piece of tungsten metal wire enclosed by a carbon tube. Line emissions from W0, W5+, W6+, W24+–W28+, W37+, W38+, and W41+–W46+ are observed simultaneously in the visible (3200–3550 Å), vacuum ultraviolet (250–1050 Å), and extreme ultraviolet (5–300 Å) wavelength ranges and the wavelengths are summarized. Temporal evolutions of line emissions from these charge states are compared for comprehensive understanding of tungsten impurity behavior in a single discharge. The charge distribution of tungsten ions strongly depends on the electron temperature. Measurements of emissions from W10+ to W20+ are still insufficient, which is addressed as a future task.

]]>Atoms doi: 10.3390/atoms9030068

Authors: Gomonai Remeta Gomonai

Within the framework of a three-level model, the process of three-photon ionization with one-photon resonance between two excited levels (with the lower one being initially unpopulated) is considered using the density matrix method. It is shown that such resonance can result in the appearance of a maximum in the three-photon ionization spectrum when detuning between the resonance wavenumber and the wavenumber of the transition responsible for the lower excited level being populated exceeds the laser radiation linewidth by more than three orders of magnitude.

]]>Atoms doi: 10.3390/atoms9030067

Authors: Imane Ajana Driss Nehari Driss Khalil Abdelmalek Taoutioui Hicham Agueny Abdelkader Makhoute

We report on a joined experimental and theoretical study of differential cross-sections resulting from inelastic scattering of a monoenergetic electron by helium atoms in the presence of an intense carbon dioxide laser. In particular, we measured the signals of the scattered electrons during the simultaneous electron–photon excitation of He 21P state for the first three microseconds of the laser pulse. The signals were measured for an incident electron energy of 45 eV and showed a structure that emerged at small scattering angles. The latter was found to be sensitive to the nature of the transferred photons, as well as the intensity of the laser field. The experimental findings were supported by quantum calculations based on the second-order Born approximation in which the correlated electron–electron interactions were taken into account.

]]>Atoms doi: 10.3390/atoms9030066

Authors: Anatoli Kheifets

The process of reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) reveals the target atom electronic structure when one of the transitions proceeds from below the ionization threshold. Such an under-threshold RABBITT resonates with the target bound states and thus maps faithfully the discrete energy levels and the corresponding oscillator strengths. We demonstrate this sensitivity by considering the Ne atom driven by the combination of the XUV and IR pulses at the fundmanetal laser frequency in the 800 and 1000 nm ranges.

]]>Atoms doi: 10.3390/atoms9030065

Authors: Prasenjit Das Pratim Kumar Chattaraj

Density functional theory (DFT) was used to study the structure, stability, and bonding in some selected neutral pentaatomic systems, viz., CGa2Ge2, CAlGaGe2, and CSiGa2Ge containing planar tetracoordinate carbon. The systems are kinetically stable, as predicted from the ab initio molecular dynamics simulations. The natural bond orbital (NBO) analysis showed that strong electron donation occurs to the central planar carbon atom by the peripheral atoms in all the studied systems. From the nucleus independent chemical shift (NICS) analysis, it is shown that the systems possess both σ- and π- aromaticity. The presence of 18 valence electrons in these systems, in their neutral form, appears to be important for their stability with planar geometries rather than tetrahedral structures. The nature of bonding is understood through the adaptive natural density partitioning analysis (AdNDP), quantum theory of atoms in molecules (QTAIM) analysis, and also via Wiberg bond index (WBI) and electron localization function (ELF).

]]>Atoms doi: 10.3390/atoms9030064

Authors: Luis A. Poveda Marcio T. do N. Varella José R. Mohallem

The vibrational excitation cross-section of a diatomic molecule by positron impact is obtained using wave-packet propagation techniques. The dynamics study was carried on a two-dimensional potential energy surface, which couples a hydrogenlike harmonic oscillator to a positron via a spherically symmetric correlation polarization potential. The cross-section for the excitation of the first vibrational mode is in good agreement with previous reports. Our model suggests that a positron couples to the target vibration by responding instantly to an interaction potential, which depends on the target vibrational coordinate.

]]>Atoms doi: 10.3390/atoms9030063

Authors: Shota Era Daiji Kato Hiroyuki A. Sakaue Toshiki Umezaki Nobuyuki Nakamura Izumi Murakami

Forbidden transitions in the near-UV and visible wavelength of highly charged tungsten (W) ions are potentially useful as novel tungsten diagnostics means of fusion plasmas. Emission lines in 290–360 nm from Wq+ ions interacting with an electron beam of 540–1370 eV are measured, using a compact electron-beam-ion-trap. The charge states of 64 lines are identified as W20+–W29+. A magnetic-dipole (M1) line of W29+ between the excited states (4d84f)[(4d5/2−2)44f7/2]13/2→[(4d5/2−2)44f5/2]13/2 is newly identified; the wavelength is determined as 351.03(10) nm in air. The theoretical wavelength calculated using the multiconfiguration Dirac–Hartree–Fock method is in a good agreement with the measurement.

]]>Atoms doi: 10.3390/atoms9030062

Authors: Mehdi Ayouz Alexandre Faure Jonathan Tennyson Maria Tudorovskaya Viatcheslav Kokoouline

Cross-sections and thermally averaged rate coefficients for vibration (de-)excitation of a water molecule by electron impact are computed; one and two quanta excitations are considered for all three normal modes. The calculations use a theoretical approach that combines the normal mode approximation for vibrational states of water, a vibrational frame transformation employed to evaluate the scattering matrix for vibrational transitions and the UK molecular R-matrix code. The interval of applicability of the rate coefficients is from 10 to 10,000 K. A comprehensive set of calculations is performed to assess uncertainty of the obtained data. The results should help in modelling non-LTE spectra of water in various astrophysical environments.

]]>Atoms doi: 10.3390/atoms9030061

Authors: Ahmad Sakaamini Jean-Baptiste Faure Murtadha Khakoo Oleg Zatsarinny Klaus Bartschat

Benchmark intensity ratio measurements of the energy loss lines of krypton for excitation of the 4p61S0→4p55s[3/2]2, 4p55s[3/2]1, 4p55s′[1/2]0, and 4p55s′[1/2]1 transitions are reported, these being the lowest electronic excitations for krypton. The importance of these ratios as stringent tests of theoretical electron scattering models for the noble gases is discussed, as well as the role of spin-exchange and direct processes regarding the angular dependence of these ratios. The experimental data are compared with predictions from fully-relativistic B-spline R-matrix (close-coupling) calculations.

]]>Atoms doi: 10.3390/atoms9030060

Authors: Nagaaki Kambara Tomoko Kawate Tetsutarou Oishi Yasuko Kawamoto Hiroyuki A. Sakaue Daiji Kato Nobuyuki Nakamura Hirohisa Hara Izumi Murakami

The intensity ratio of Fe XIV 264.765A/274.203A is useful to determine the electron density of solar corona, and the relationship between the electron density and the intensity ratio obtained from a model should be evaluated using laboratory plasmas to estimate the electron density more precisely. We constructed a new collisional–radiative model (CR-model) for Fe XIV (an Al-like iron ion) by considering the processes of proton-impact excitation and electron-impact ionization to the excited states of a Mg-like iron ion. The atomic data used in the CR-model were calculated using the HULLAC atomic code. The model was evaluated based on laboratory experiments using a compact electron beam ion trap, called CoBIT, and the Large Helical Device (LHD). The measured Fe XIV 264.785 Å/274.203 Å line intensity ratio with CoBIT was 1.869 ± 0.036, and it agreed well with our CR-model results. Concurrently, the measured ratio using LHD was larger than the results of our CR-model and CHIANTI. The estimated electron densities using our CR-model agreed with those from CHIANTI within a factor of 1.6–2.4 in the range of ne≈1010−11cm−3. Further model development is needed to explain the ratio in a high-electron density region.

]]>Atoms doi: 10.3390/atoms9030059

Authors: Mahmudul H. Khandker A. K. Fazlul Haque M. M. Haque M. Masum Billah Hiroshi Watabe M. Alfaz Uddin

Calculations are presented for differential, integrated elastic, momentum transfer, viscosity, inelastic, total cross sections and spin polarization parameters S, T and U for electrons and positrons scattering from atoms and ions of radon isonuclear series in the energy range from 1 eV–1 MeV. In addition, we analyze systematically the details of the critical minima in the elastic differential cross sections along with the positions of the corresponding maximum polarization points in the Sherman function for the aforesaid scattering systems. Coulomb glory is investigated across the ionic series. A short range complex optical potential, comprising static, polarization and exchange (for electron projectile) potentials, is used to describe the scattering from neutral atom. This potential is supplemented by the Coulomb potential for the same purpose for a charged atom. The Dirac partial wave analysis, employing the aforesaid potential, is carried out to calculate the aforesaid scattering observables. A comparison of our results with other theoretical findings shows a reasonable agreement over the studied energy range.

]]>Atoms doi: 10.3390/atoms9030058

Authors: Daniel Gochnauer Tahiyat Rahman Anna Wirth-Singh Subhadeep Gupta

We present enabling experimental tools and atom interferometer implementations in a vertical “fountain” geometry with ytterbium Bose–Einstein condensates. To meet the unique challenge of the heavy, non-magnetic atom, we apply a shaped optical potential to balance against gravity following evaporative cooling and demonstrate a double Mach–Zehnder interferometer suitable for applications such as gravity gradient measurements. Furthermore, we also investigate the use of a pulsed optical potential to act as a matter wave lens in the vertical direction during expansion of the Bose–Einstein condensate. This method is shown to be even more effective than the aforementioned shaped optical potential. The application of this method results in a reduction of velocity spread (or equivalently an increase in source brightness) of more than a factor of five, which we demonstrate using a two-pulse momentum-space Ramsey interferometer. The vertical geometry implementation of our diffraction beams ensures that the atomic center of mass maintains overlap with the pulsed atom optical elements, thus allowing extension of atom interferometer times beyond what is possible in a horizontal geometry. Our results thus provide useful tools for enhancing the precision of atom interferometry with ultracold ytterbium atoms.

]]>Atoms doi: 10.3390/atoms9030057

Authors: Reinhardt Pinzón

Molecular dynamic simulations of Li+, and Br− ions in acetonitrile were carried out. The simulated structural properties were compared to experimental data. The solvent potentials of Li+-Br−, Li+-Li+, and Br−-Br− were evaluated using constrained molecular dynamics (CMD) simulations, to determine the solvent contribution to the total force acting on the solute and estimate the liquid arrangements according to the potential of mean force (PMF) values. The PMF of friction kernels and the passage across the Li+-Br− barrier was studied using the Grote–Hynes theory. The union-separation development happens in the polarization confining system.

]]>Atoms doi: 10.3390/atoms9030056

Authors: Albandari W. Alrowaily Sandra J. Ward Peter Van Reeth

We find a zero in the positronium formation scattering amplitude and a deep minimum in the logarithm of the corresponding differential cross section for positron–helium collisions for an energy just above the positronium formation threshold. Corresponding to the zero, there is a vortex in the extended velocity field that is associated with this amplitude when one treats both the magnitude of the momentum of the incident positron and the angle of the scattered positronium as independent variables. Using the complex Kohn variational method, we determine accurately two-channel K-matrices for positron–helium collisions in the Ore gap. We fit these K-matrices using both polynomials and the Watanabe and Greene’s multichannel effective range theory taking into account explicitly the polarization potential in the Ps-He+ channel. Using the fitted K-matrices we determine the extended velocity field and show that it rotates anticlockwise around the zero in the positronium formation scattering amplitude. We find that there is a valley in the logarithm of the positronium formation differential cross section that includes the deep minimum and also a minimum in the forward direction.

]]>Atoms doi: 10.3390/atoms9030055

Authors: Anastasia S. Chervinskaya Dmitrii L. Dorofeev Boris A. Zon

We consider the redistribution of the Rydberg state population resulting from multistep cascade transitions induced by radiation with a continuous spectrum. The population distribution is analyzed within the space of quantum numbers n and l. The dynamics of the system are studied using both the numerical solution of kinetic equations and the diffusion approximation based on the Fokker–Planck equation. The main path of the redistribution process is determined.

]]>Atoms doi: 10.3390/atoms9030054

Authors: William Miyahira Andrew P. Rotunno ShuangLi Du Seth Aubin

We present a toolbox of microstrip building blocks for microwave atom chips geared towards trapped atom interferometry. Transverse trapping potentials based on the AC Zeeman (ACZ) effect can be formed from the combined microwave magnetic near fields of a pair or a triplet of parallel microstrip transmission lines. Axial confinement can be provided by a microwave lattice (standing wave) along the microstrip traces. Microwave fields provide additional parameters for dynamically adjusting ACZ potentials: detuning of the applied frequency to select atomic transitions and local polarization controlled by the relative phase in multiple microwave currents. Multiple ACZ traps and potentials, operating at different frequencies, can be targeted to different spin states simultaneously, thus enabling spin-specific manipulation of atoms and spin-dependent trapped atom interferometry.

]]>Atoms doi: 10.3390/atoms9030053

Authors: Klaus Bartschat Charlotte Froese Fischer Alexei N. Grum-Grzhimailo

Oleg Ivanovich Zatsarinny (Figure 1) was born in the city of Uzhgorod, Ukraine, on 4 November 1953 [...]

]]>Atoms doi: 10.3390/atoms9030052

Authors: Armando Francesco Borghesani

We report new accurate measurements of the drift mobility μ of quasifree electrons in moderately dense helium gas in the temperature range 26K≤T≤300K for densities lower than those at which states of electrons localized in bubbles appear. By heuristically including multiple-scattering effects into classical kinetic formulas, as previously done for neon and argon, an excellent description of the field E, density N, and temperature T dependence of μ is obtained. Moreover, the experimental evidence suggests that the strong decrease of the zero-field density-normalized mobility μ0N with increasing N from the low up to intermediate density regime is mainly due to weak localization of electrons caused by the intrinsic disorder of the system, whereas the further decrease of μ0N for even larger N is due to electron self-trapping in cavities. We suggest that a distinction between weakly localized and electron bubble states can be done by inspecting the behavior of μ0N as a function of N at intermediate densities.

]]>Atoms doi: 10.3390/atoms9030051

Authors: Jinyang Li Gregório R. M. da Silva Wayne C. Huang Mohamed Fouda Jason Bonacum Timothy Kovachy Selim M. Shahriar

A point source interferometer (PSI) is a device where atoms are split and recombined by applying a temporal sequence of Raman pulses during the expansion of a cloud of cold atoms behaving approximately as a point source. The PSI can work as a sensitive multi-axes gyroscope that can automatically filter out the signal from accelerations. The phase shift arising from the rotations is proportional to the momentum transferred to each atom from the Raman pulses. Therefore, by increasing the momentum transfer, it should be possible to enhance the sensitivity of the PSI. Here, we investigate the degree of enhancement in sensitivity that could be achieved by augmenting the PSI with large momentum transfer (LMT) employing a sequence of many Raman pulses with alternating directions. We analyze how factors such as Doppler detuning, spontaneous emission, and the finite initial size of the atomic cloud compromise the advantage of LMT and how to find the optimal momentum transfer under these limitations, with both the semi-classical model and a model under which the motion of the center of mass of each atom is described quantum mechanically. We identify a set of realistic parameters for which LMT can improve the PSI by a factor of nearly 40.

]]>Atoms doi: 10.3390/atoms9030050

Authors: Charlotte Froese Fischer

The paper reviews the history of B-spline methods for atomic structure calculations for bound states. It highlights various aspects of the variational method, particularly with regard to the orthogonality requirements, the iterative self-consistent method, the eigenvalue problem, and the related sphf, dbsr-hf, and spmchf programs. B-splines facilitate the mapping of solutions from one grid to another. The following paper describes a two-stage approach where the goal of the first stage is to determine parameters of the problem, such as the range and approximate values of the orbitals, after which the level of accuracy is raised. Once convergence has been achieved the Virial Theorem, which is evaluated as a check for accuracy. For exact solutions, the V/T ratio for a non-relativistic calculation is −2.

]]>Atoms doi: 10.3390/atoms9030049

Authors: Oleksandr Borovik Lyudmila Bandurina

These memoirs about Oleg Ivanovich Zatsarinny (1953–2021) concentrate on his scientific activities in the Ukraine.

]]>Atoms doi: 10.3390/atoms9030048

Authors: M. Raineri M. Gallardo J. Reyna Almandos A. G. Trigueiros C. J. B. Pagan

A capillary pulsed-discharge and a theta-pinch were used to record Kr spectra in the region of 330–4800 Å. A set of 168 transitions of these spectra were classified for the first time. We extended the analysis to twenty-five new energy levels belonging to 3s23p24d, 3s23p25d even configurations. We calculated weighted transition probabilities (gA) for all of the experimentally observed lines and lifetimes for new energy levels using a relativistic Hartree–Fock method, including core-polarization effects.

]]>Atoms doi: 10.3390/atoms9030047

Authors: Kathryn Hamilton Klaus Bartschat Oleg Zatsarinny

We have applied the full-relativistic Dirac B-Spline R-matrix method to obtain cross sections for electron scattering from ytterbium atoms. The results are compared with those obtained from a semi-relativistic (Breit-Pauli) model-potential approach and the few available experimental data.

]]>Atoms doi: 10.3390/atoms9030046

Authors: Chihiro Suzuki Fumihiro Koike Izumi Murakami Tetsutarou Oishi Naoki Tamura

Extreme ultraviolet (EUV) spectra of highly charged praseodymium (Pr) and neodymium (Nd) ions have been investigated in optically thin high-temperature plasmas produced in the Large Helical Device (LHD), a magnetically confined torus device for fusion research. Discrete spectral lines emitted mainly from highly charged ions having 4s or 4p outermost electrons were observed in plasmas with electron temperatures of 0.8–1.8 keV. Most of the isolated lines of Ga-like to Cu-like Nd ions were identified by a comparison with the recent data recorded in an electron beam ion trap (EBIT). The isolated lines of Pr ions corresponding to the identified lines of Nd ions were easily assigned from a similarity of the spectral feature for these two elements. As a result, some of the lines of Pr ions have been newly identified experimentally for the first time in this study.

]]>Atoms doi: 10.3390/atoms9030045

Authors: Elmar Träbert

Beam–foil spectroscopy offers the efficient excitation of the spectra of a single element as well as time-resolved observation. Extreme-ultraviolet (EUV) beam–foil survey and detail spectra of Ti, Fe, Ni, and Cu are presented, as well as survey spectra of Fe and Ni obtained at an electron beam ion trap. Various details are discussed in the context of line intensity ratios, yrast transitions, prompt and delayed spectra, and intercombination transitions.

]]>Atoms doi: 10.3390/atoms9030044

Authors: Artem A. Kotov Dmitry A. Glazov Vladimir M. Shabaev Günter Plunien

The generalized dual-kinetic-balance approach for axially symmetric systems is employed to solve the two-center Dirac problem. The spectra of one-electron homonuclear quasimolecules are calculated and compared with the previous calculations. The analysis of the monopole approximation with two different choices of the origin is performed. Special attention is paid to the lead and xenon dimers, Pb82+–Pb82+–e− and Xe54+–Xe54+–e−, where the energies of the ground and several excited σ-states are presented in the wide range of internuclear distances. The developed method provides the quasicomplete finite basis set and allows for the construction of perturbation theory, including within the bound-state QED.

]]>Atoms doi: 10.3390/atoms9030043

Authors: Nafees Uddin Paresh Modak Bobby Antony

The need for a reliable and comprehensive database of cross-sections for many atomic and molecular species is immense due to its key role in R&amp;D domains such as plasma modelling, bio-chemical processes, medicine and many other natural and technological environments. Elastic, momentum transfer and total cross-sections of butanol and pentanol isomers by the impact of 6–5000 eV electrons are presented in this work. The calculations were performed by employing the spherical complex optical potential formalism along with single-centre expansion and group additivity rule. The investigations into the presence of isomeric variations reveal that they are more pronounced at low and intermediate energies. Elastic, total cross-sections (with the exception of n-pentanol) and momentum transfer cross-sections for all pentanol isomers are reported here for the first time, to the best of our knowledge. Our momentum transfer cross-sections for butanol isomers are in very good agreement with the experimental and theoretical values available, and in reasonable consensus for other cross-sections.

]]>Atoms doi: 10.3390/atoms9030042

Authors: Adam Singor Dmitry Fursa Igor Bray Robert McEachran

A fully relativistic approach to calculating photoionization and photon-atom scattering cross sections for quasi one-electron atoms is presented. An extensive set of photoionization cross sections have been calculated for alkali atoms: lithium, sodium, potassium, rubidium and cesium. The importance of relativistic effects and core polarization on the depth and position of the Cooper minimum in the photoionization cross section is investigated. Good agreement was found with previous Dirac-based B-spline R-matrix calculations of Zatsarinny and Tayal and recent experimental results.

]]>Atoms doi: 10.3390/atoms9030041

Authors: Eugene Oks

We studied the consequences of the existence of the second flavor of hydrogen atoms (SFHA)—the existence proven by atomic experiments and evidenced by astrophysical observations—on the resonant charge exchange. We found analytically that there is indeed an important difference in the corresponding cross-sections for the SFHA compared to the usual hydrogen atoms. This difference could serve as an additional tool for distinguishing between the two kinds of hydrogen atoms in future experiments/observations. We also show that the SFHA does not exhibit any Stark effect—whether in a uniform or a non-uniform electric field—in any order of the perturbation theory.

]]>Atoms doi: 10.3390/atoms9030040

Authors: Nicola Piovella Angel Tarramera Gisbert Gordon R. M. Robb

Collective atomic recoil lasing (CARL) is a process during which an ensemble of cold atoms, driven by a far-detuned laser beam, spontaneously organize themselves in periodic structures on the scale of the optical wavelength. The principle was envisaged by R. Bonifacio in 1994 and, ten years later, observed in a series of experiments in Tübingen by C. Zimmermann and colleagues. Here, we review the basic model of CARL in the classical and in the quantum regime.

]]>Atoms doi: 10.3390/atoms9030039

Authors: Leon Karpa

Ion–atom interactions are a comparatively recent field of research that has drawn considerable attention due to its applications in areas including quantum chemistry and quantum simulations. In first experiments, atomic ions and neutral atoms have been successfully overlapped by devising hybrid apparatuses combining established trapping methods, Paul traps for ions and optical or magneto-optical traps for neutral atoms, respectively. Since then, the field has seen considerable progress, but the inherent presence of radiofrequency (rf) fields in such hybrid traps was found to have a limiting impact on the achievable collision energies. Recently, it was shown that suitable combinations of optical dipole traps (ODTs) can be used for trapping both atoms and atomic ions alike, allowing to carry out experiments in absence of any rf fields. Here, we show that the expected cooling in such bichromatic traps is highly sensitive to relative position fluctuations between the two optical trapping beams, suggesting that this is the dominant mechanism limiting the currently observed cooling performance. We discuss strategies for mitigating these effects by using optimized setups featuring adapted ODT configurations. This includes proposed schemes that may mitigate three-body losses expected at very low temperatures, allowing to access the quantum dominated regime of interaction.

]]>Atoms doi: 10.3390/atoms9030038

Authors: M. Niranjan Anand Prakash S. A. Rangwala

We evaluate the performance of multipole, linear Paul traps for the purpose of studying cold ion–atom collisions. A combination of numerical simulations and analysis based on the virial theorem is used to draw conclusions on the differences that result, by considering the trapping details of several multipole trap types. Starting with an analysis of how a low energy collision takes place between a fully compensated, ultracold trapped ion and an stationary atom, we show that a higher order multipole trap is, in principle, advantageous in terms of collisional heating. The virial analysis of multipole traps then follows, along with the computation of trapped ion trajectories in the quadrupole, hexapole, octopole and do-decapole radio frequency traps. A detailed analysis of the motion of trapped ions as a function of the amplitude, phase and stability of the ion’s motion is used to evaluate the experimental prospects for such traps. The present analysis has the virtue of providing definitive answers for the merits of the various configurations, using first principles.

]]>Atoms doi: 10.3390/atoms9030037

Authors: Roham Richberg Andrew M. Martin

The focusing of a rubidium Bose–Einstein condensate via an optical lattice potential is numerically investigated. The results are compared with a classical trajectory model which underestimates the width of the focused beam. Via the inclusion of the effects of interactions into the classical trajectories model, we show that it is possible to obtain reliable estimates for the width of the focused beam when compared to numerical integration of the Gross–Pitaevskii equation. Finally, we investigate the optimal regimes for focusing and find that for a strongly interacting Bose–Einstein condensate focusing of order 20 nm may be possible.

]]>Atoms doi: 10.3390/atoms9030036

Authors: Noriaki Matsunami Masao Sataka Satoru Okayasu Bun Tsuchiya

It has been observed that modifications of non-metallic solids such as sputtering and surface morphology are induced by electronic excitation under high-energy ion impact and that these modifications depend on the charge of incident ions (charge-state effect or incident-charge effect). A simple model is described, consisting of an approximation to the mean-charge-evolution by saturation curves and the charge-dependent electronic stopping power, for the evaluation of the relative yield (e.g., electronic sputtering yield) of the non-equilibrium charge incidence over that of the equilibrium-charge incidence. It is found that the present model reasonably explains the charge state effect on the film thickness dependence of lattice disordering of WO3. On the other hand, the model appears to be inadequate to explain the charge-state effect on the electronic sputtering of WO3 and LiF. Brief descriptions are given for the charge-state effect on the electronic sputtering of SiO2, UO2 and UF4, and surface morphology modification of poly-methyl-methacrylate (PMMA), mica and tetrahedral amorphous carbon (ta-C).

]]>Atoms doi: 10.3390/atoms9030035

Authors: Thorsten Ackemann Guillaume Labeyrie Giuseppe Baio Ivor Krešić Josh G. M. Walker Adrian Costa Boquete Paul Griffin William J. Firth Robin Kaiser Gian-Luca Oppo Gordon R. M. Robb

This article discusses self-organization in cold atoms via light-mediated interactions induced by feedback from a single retro-reflecting mirror. Diffractive dephasing between the pump beam and the spontaneous sidebands selects the lattice period. Spontaneous breaking of the rotational and translational symmetry occur in the 2D plane transverse to the pump. We elucidate how diffractive ripples couple sites on the self-induced atomic lattice. The nonlinear phase shift of the atomic cloud imprinted onto the optical beam is the parameter determining coupling strength. The interaction can be tailored to operate either on external degrees of freedom leading to atomic crystallization for thermal atoms and supersolids for a quantum degenerate gas, or on internal degrees of freedom like populations of the excited state or Zeeman sublevels. Using the light polarization degrees of freedom on the Poincaré sphere (helicity and polarization direction), specific irreducible tensor components of the atomic Zeeman states can be coupled leading to spontaneous magnetic ordering of states of dipolar and quadrupolar nature. The requirements for critical interaction strength are compared for the different situations. Connections and extensions to longitudinally pumped cavities, counterpropagating beam schemes and the CARL instability are discussed.

]]>Atoms doi: 10.3390/atoms9020034

Authors: Markus Deiß Shinsuke Haze Johannes Hecker Denschlag

We present a novel binding mechanism where a neutral Rydberg atom and an atomic ion form a molecular bound state at a large internuclear distance. The binding mechanism is based on Stark shifts and level crossings that are induced in the Rydberg atom due to the electric field of the ion. At particular internuclear distances between the Rydberg atom and the ion, potential wells occur that can hold atom–ion molecular bound states. Apart from the binding mechanism, we describe important properties of the long-range atom–ion Rydberg molecule, such as its lifetime and decay paths, its vibrational and rotational structure, and its large dipole moment. Furthermore, we discuss methods of how to produce and detect it. The unusual properties of the long-range atom–ion Rydberg molecule give rise to interesting prospects for studies of wave packet dynamics in engineered potential energy landscapes.

]]>Atoms doi: 10.3390/atoms9020033

Authors: R.I. Campeanu Colm T. Whelan

Triple differential cross sections (TDCS) are presented for the electron and positron impact ionization of inert gas atoms in a range of energy sharing geometries where a number of significant few body effects compete to define the shape of the TDCS. Using both positrons and electrons as projectiles has opened up the possibility of performing complementary studies which could effectively isolate competing interactions that cannot be separately detected in an experiment with a single projectile. Results will be presented in kinematics where the electron impact ionization appears to be well understood and using the same kinematics positron cross sections will be presented. The kinematics are then varied in order to focus on the role of distortion, post collision interaction (pci), and interference effects.

]]>Atoms doi: 10.3390/atoms9020032

Authors: Michael S. Pindzola Stuart D. Loch James P. Colgan

The time-dependent close-coupling method has been recently applied to calculate electron-impact direct ionization cross sections for the Kr, W, and Pb atoms. An overview is presented for these three heavy neutral atom systems. When the direct ionization cross sections are combined with excitation-autoionization cross sections, the total ionization cross sections were found to be in reasonable agreement with crossed-beams measurements for Kr and Pb.

]]>Atoms doi: 10.3390/atoms9020031

Authors: Ghanshyam Purohit

We report triple differential cross-sections (TDCSs) for the electron impact single ionization of tungsten atoms for the ionization taking place from the outer sub shells of tungsten atoms, viz. W (6s), W (5d), W (5p) and W (4f). The study of the electron-induced processes such as ionization, excitation, autoionization from tungsten and its charged states is strongly required to diagnose and model the fusion plasma in magnetic devices such as Tokamaks. Particularly, the cross-section data are important to understand the electron spectroscopy involved in the fusion plasma. In the present study, we report TDCS results for the ionization of W atoms at 200, 500 and 1000 eV projectile energy at different values of scattered electron angles. It was observed that the trends of TDCSs for W (5d) are significantly different from the trends of TDCSs for W (6s), W (5p) and W (4f). It was further observed that the TDCS for W atoms has sensitive dependence on value of momentum transfer and projectile energy.

]]>Atoms doi: 10.3390/atoms9020030

Authors: Spiros Alexiou

Line broadening is usually dominated by interactions of an atomic system with a stochastic, random medium. When, in addition to the random medium, a non-random field (such as a laser) is applied, the line profile may be modified in significant ways. The present work discusses these modifications and the methods to deal with them.

]]>Atoms doi: 10.3390/atoms9020029

Authors: Sylvie Sahal-Bréchot

The present paper revisits the determination of the semi-classical limit of the Feshbach resonances which play a role in electron impact broadening (the so-called “Stark“ broadening) of isolated spectral lines of ionized atoms. The Gailitis approximation will be used. A few examples of results will be provided, showing the importance of the role of the Feshbach resonances.

]]>Atoms doi: 10.3390/atoms9020028

Authors: Nicola Piovella Luca Volpe

High-gain free-electron lasers, conceived in the 1980s, are nowadays the only bright sources of coherent X-ray radiation available. In this article, we review the theory developed by R. Bonifacio and coworkers, who have been some of the first scientists envisaging its operation as a single-pass amplifier starting from incoherent undulator radiation, in the so called self-amplified spontaneous emission (SASE) regime. We review the FEL theory, discussing how the FEL parameters emerge from it, which are fundamental for describing, designing and understanding all FEL experiments in the high-gain, single-pass operation.

]]>Atoms doi: 10.3390/atoms9020027

Authors: Jean-Paul Mosnier Eugene T. Kennedy Jean-Marc Bizau Denis Cubaynes Ségolène Guilbaud Christophe Blancard Brendan M. McLaughlin

High-resolution K-shell photoionization cross-sections for the C-like atomic nitrogen ion (N+) are reported in the 398 eV (31.15 Å) to 450 eV (27.55 Å) energy (wavelength) range. The results were obtained from absolute ion-yield measurements using the SOLEIL synchrotron radiation facility for spectral bandpasses of 65 meV or 250 meV. In the photon energy region 398–403 eV, 1s⟶2p autoionizing resonance states dominated the cross section spectrum. Analyses of the experimental profiles yielded resonance strengths and Auger widths. In the 415–440 eV photon region 1s⟶(1s2s22p2 4P)np and 1s⟶(1s2s22p2 2P)np resonances forming well-developed Rydberg series up n=7 and&nbsp;n=8&nbsp;, respectively, were identified in both the single and double ionization spectra. Theoretical photoionization cross-section calculations, performed using the R-matrix plus pseudo-states (RMPS) method and the multiconfiguration Dirac-Fock (MCDF) approach were bench marked against these high-resolution experimental results. Comparison of the state-of-the-art theoretical work with the experimental studies allowed the identification of new resonance features. Resonance strengths, energies and Auger widths (where available) are compared quantitatively with the theoretical values. Contributions from excited metastable states of the N+ ions were carefully considered throughout.

]]>Atoms doi: 10.3390/atoms9020026

Authors: Anaïs Dorne Bijaya K. Sahoo Anders Kastberg

We have evaluated the isotope shift (IS) constants of the first five low-lying fine-structure states of the singly charged calcium ion (Ca II) by adopting a finite-field (FF) approach in the relativistic coupled-cluster (RCC), a method developed by us and by using a code also developed by us. A similar previous calculation using singles and doubles approximation RCC theory (RCCSD method), gives results for the individual states in the FF approach that deviate substantially, while the differential values (the shifts of the spectral lines) agree reasonably well with other theoretical results and with experiments. However, we find a contrasting trend from the FF approach using our RCCSD method although calculations with the Dirac–Hartree–Fock (DHF) method shows good agreement. Our results also show that inclusion of partial triple excitations in the perturbative approach (RCCSD(T) method) through energy derivation lessens accuracy, but these results can be improved when triple excitations are included in the wave function that determines the RCC equations. The differences between the RCCSD and RCCSD(T) results demonstrate the importance of triple excitations in evaluating energies and IS constants for Ca II. Finally, we also present ab initio values of IS’s between the S–P, S–D, and D–P transitions in the DHF, and RCCSD and RCCSD(T) approximations and this is compared to the previously reported values (theoretical as well as experimental).

]]>Atoms doi: 10.3390/atoms9020025

Authors: Sayan Choudhury

Periodically driven (Floquet) systems are described by time-dependent Hamiltonians that possess discrete time translation symmetry. The spontaneous breaking of this symmetry leads to the emergence of a novel non-equilibrium phase of matter—the Discrete Time Crystal (DTC). In this paper, we propose a scheme to extend the lifetime of a DTC in a paradigmatic model—a translation-invariant Ising spin chain with nearest-neighbor interaction J, subjected to a periodic kick by a transverse magnetic field with frequency 2πT. This system exhibits the hallmark signature of a DTC—persistent sub-harmonic oscillations with frequency πT—for a wide parameter regime. Employing both analytical arguments as well as exact diagonalization calculations, we demonstrate that the lifetime of the DTC is maximized, when the interaction strength is tuned to an optimal value, JT=π. Our proposal essentially relies on an interaction-induced quantum interference mechanism that suppresses the creation of excitations, and thereby enhances the DTC lifetime. Intriguingly, we find that the period doubling oscillations can last eternally in even size systems. This anomalously long lifetime can be attributed to a time reflection symmetry that emerges at JT=π. Our work provides a promising avenue for realizing a robust DTC in various quantum emulator platforms.

]]>Atoms doi: 10.3390/atoms9020024

Authors: Nisha Job Maya Khatun Krishnan Thirumoorthy Sasanka Sankhar Reddy CH Vijayanand Chandrasekaran Anakuthil Anoop Venkatesan S. Thimmakondu

Isomers of CAl4Mg and CAl4Mg− have been theoretically characterized for the first time. The most stable isomer for both the neutral and anion contain a planar tetracoordinate carbon (ptC) atom. Unlike the isovalent CAl4Be case, which contains a planar pentacoordinate carbon atom as the global minimum geometry, replacing beryllium with magnesium makes the ptC isomer the global minimum due to increased ionic radii of magnesium. However, it is relatively easier to conduct experimental studies for CAl4Mg0/− as beryllium is toxic. While the neutral molecule containing the ptC atom follows the 18 valence electron rule, the anion breaks the rule with 19 valence electrons. The electron affinity of CAl4Mg is in the range of 1.96–2.05 eV. Both the global minima exhibit π/σ double aromaticity. Ab initio molecular dynamics simulations were carried out for both the global minima at 298 K for 10 ps to confirm their kinetic stability.

]]>Atoms doi: 10.3390/atoms9020023

Authors: Elmar Träbert

Beam-foil extreme-ultraviolet spectra of Sc, V, Cr, Mn, Co and Zn are presented that provide survey data of a single element exclusively. Various details are discussed in the context of line intensity ratios, yrast transitions, delayed spectra and peculiar properties of the beam-foil light source.

]]>Atoms doi: 10.3390/atoms9020022

Authors: Magnus G. Skou Thomas G. Skov Nils B. Jørgensen Jan J. Arlt

An impurity immersed in a medium constitutes a canonical scenario applicable in a wide range of fields in physics. Though our understanding has advanced significantly in the past decades, quantum impurities in a bosonic environment are still of considerable theoretical and experimental interest. Here, we discuss the initial dynamics of such impurities, which was recently observed in interferometric experiments. Experimental observations from weak to unitary interactions are presented and compared to a theoretical description. In particular, the transition between two initial dynamical regimes dominated by two-body interactions is analyzed, yielding transition times in clear agreement with the theoretical prediction. Additionally, the distinct time dependence of the coherence amplitude in these regimes is obtained by extracting its power-law exponents. This benchmarks our understanding and suggests new ways of probing dynamical properties of quantum impurities.

]]>Atoms doi: 10.3390/atoms9020021

Authors: Zhe Luo E. R. Moan C. A. Sackett

A Sagnac atom interferometer can be constructed using a Bose–Einstein condensate trapped in a cylindrically symmetric harmonic potential. Using the Bragg interaction with a set of laser beams, the atoms can be launched into circular orbits, with two counterpropagating interferometers allowing many sources of common-mode noise to be excluded. In a perfectly symmetric and harmonic potential, the interferometer output would depend only on the rotation rate of the apparatus. However, deviations from the ideal case can lead to spurious phase shifts. These phase shifts have been theoretically analyzed for anharmonic perturbations up to quartic in the confining potential, as well as angular deviations of the laser beams, timing deviations of the laser pulses, and motional excitations of the initial condensate. Analytical and numerical results show the leading effects of the perturbations to be second order. The scaling of the phase shifts with the number of orbits and the trap axial frequency ratio are determined. The results indicate that sensitive parameters should be controlled at the 10−5 level to accommodate a rotation sensing accuracy of 10−9 rad/s. The leading-order perturbations are suppressed in the case of perfect cylindrical symmetry, even in the presence of anharmonicity and other errors. An experimental measurement of one of the perturbation terms is presented.

]]>Atoms doi: 10.3390/atoms9020020

Authors: Alexandre Gumberidze Daniel B. Thorn Andrey Surzhykov Christopher J. Fontes Dariusz Banaś Heinrich F. Beyer Weidong Chen Robert E. Grisenti Siegbert Hagmann Regina Hess Pierre-Michel Hillenbrand Paul Indelicato Christophor Kozhuharov Michael Lestinsky Renate Märtin Nikolaos Petridis Roman V. Popov Reinhold Schuch Uwe Spillmann Stanislav Tashenov Sergiy Trotsenko Andrzej Warczak Günter Weber Weiqiang Wen Danyal F. A. Winters Natalya Winters Zhong Yin Thomas Stöhlker

In this paper, we present an experimental and theoretical study of excitation processes for the heaviest stable helium-like ion, that is, He-like uranium occurring in relativistic collisions with hydrogen and argon targets. In particular, we concentrate on angular distributions of the characteristic Kα radiation following the K → L excitation of He-like uranium. We pay special attention to the magnetic sub-level population of the excited 1s2lj states, which is directly related to the angular distribution of the characteristic Kα radiation. We show that the experimental data can be well described by calculations taking into account the excitation by the target nucleus as well as by the target electrons. Moreover, we demonstrate for the first time an important influence of the electron-impact excitation process on the angular distributions of the Kα radiation produced by excitation of He-like uranium in collisions with different targets.

]]>Atoms doi: 10.3390/atoms9010019

Authors: Yuichi Tachibana Yuuki Onitsuka Masakazu Yamazaki Masahiko Takahashi

An apparatus has been developed for electron-atom Compton scattering experiments that can employ a pulsed laser and a picosecond pulsed electron beam in a pump-and-probe scheme. The design and technical details of the apparatus are described. Furthermore, experimental results on the Xe atom in its ground state are presented to illustrate the performance of the pulsed electron gun and the detection and spectrometric capabilities for scattered electrons. The scope of future application is also discussed, involving real-time measurement of intramolecular force acting on each constituent atom with different mass numbers, in a transient, evolving system during a molecular reaction.

]]>Atoms doi: 10.3390/atoms9010018

Authors: Hiroyuki Tajima Junichi Takahashi Simeon Mistakidis Eiji Nakano Kei Iida

The notion of a polaron, originally introduced in the context of electrons in ionic lattices, helps us to understand how a quantum impurity behaves when being immersed in and interacting with a many-body background. We discuss the impact of the impurities on the medium particles by considering feedback effects from polarons that can be realized in ultracold quantum gas experiments. In particular, we exemplify the modifications of the medium in the presence of either Fermi or Bose polarons. Regarding Fermi polarons we present a corresponding many-body diagrammatic approach operating at finite temperatures and discuss how mediated two- and three-body interactions are implemented within this framework. Utilizing this approach, we analyze the behavior of the spectral function of Fermi polarons at finite temperature by varying impurity-medium interactions as well as spatial dimensions from three to one. Interestingly, we reveal that the spectral function of the medium atoms could be a useful quantity for analyzing the transition/crossover from attractive polarons to molecules in three-dimensions. As for the Bose polaron, we showcase the depletion of the background Bose-Einstein condensate in the vicinity of the impurity atom. Such spatial modulations would be important for future investigations regarding the quantification of interpolaron correlations in Bose polaron problems.

]]>Atoms doi: 10.3390/atoms9010017

Authors: Igor Alencar Marcos R. Silva Rafael Leal Pedro L. Grande Ricardo M. Papaléo

The influence of the charge state q on surface modifications induced by the impact of individual fast, heavy ions on muscovite mica was investigated. Beams of 593 MeV 197Auq+ with well-defined initial charge states over a relatively broad range of values (30 to 51) and at different irradiation geometries were used. At normal incidence, the impact features are rounded protrusions (hillocks) with ≳20 nm in diameter. At grazing angles, besides the hillocks, craters and elongated tails (up to 350 nm-long) extending along the direction of ion penetration are produced. It is shown that the impact features at normal incidence depend strongly on the initial charge state of the projectiles. This dependence is very weak at grazing angles as the ion reaches the equilibrium charge state closer to the surface. At normal ion incidence, the hillock volume scales with q3.3&nbsp;±&nbsp;0.6. This dependence stems largely from the increase in the hillock height, as a weak dependence of the diameter was observed.

]]>Atoms doi: 10.3390/atoms9010016

Authors: Emile Carbone Wouter Graef Gerjan Hagelaar Daan Boer Matthew M. Hopkins Jacob C. Stephens Benjamin T. Yee Sergey Pancheshnyi Jan van Dijk Leanne Pitchford

Technologies based on non-equilibrium, low-temperature plasmas are ubiquitous in today’s society. Plasma modeling plays an essential role in their understanding, development and optimization. An accurate description of electron and ion collisions with neutrals and their transport is required to correctly describe plasma properties as a function of external parameters. LXCat is an open-access, web-based platform for storing, exchanging and manipulating data needed for modeling the electron and ion components of non-equilibrium, low-temperature plasmas. The data types supported by LXCat are electron- and ion-scattering cross-sections with neutrals (total and differential), interaction potentials, oscillator strengths, and electron- and ion-swarm/transport parameters. Online tools allow users to identify and compare the data through plotting routines, and use the data to generate swarm parameters and reaction rates with the integrated electron Boltzmann solver. In this review, the historical evolution of the project and some perspectives on its future are discussed together with a tutorial review for using data from LXCat.

]]>Atoms doi: 10.3390/atoms9010015

Authors: Ryoichi Hajima

Generation of few-cycle optical pulses in free-electron laser (FEL) oscillators has been experimentally demonstrated in FEL facilities based on normal-conducting and superconducting linear accelerators. Analytical and numerical studies have revealed that the few-cycle FEL lasing can be explained in the frame of superradiance, cooperative emission from self-bunched systems. In the present paper, we review historical remarks of superradiance FEL experiments in short-pulse FEL oscillators with emphasis on the few-cycle pulse generation and discuss the application of the few-cycle FEL pulses to the scheme of FEL-HHG, utilization of infrared FEL pulses to drive high-harmonic generation (HHG) from gas and solid targets. The FEL-HHG enables one to explore ultrafast science with attosecond ultraviolet and X-ray pulses with a MHz repetition rate, which is difficult with HHG driven by solid-state lasers. A research program has been launched to develop technologies for the FEL-HHG and to conduct a proof-of-concept experiment of FEL-HHG.

]]>Atoms doi: 10.3390/atoms9010014

Authors: Koushik Mukherjee Soumik Bandyopadhyay Dilip Angom Andrew M. Martin Sonjoy Majumder

We present numerical simulations to unravel the dynamics associated with the creation of a vortex in a Bose–Einstein condensate (BEC), from another nonrotating BEC using two-photon Raman transition with Gaussian (G) and Laguerre–Gaussian (LG) laser pulses. In particular, we consider BEC of Rb atoms at their hyperfine ground states confined in a quasi two dimensional harmonic trap. Optical dipole potentials created by G and LG laser pulses modify the harmonic trap in such a way that density patterns of the condensates during the Raman transition process depend on the sign of the generated vortex. We investigate the role played by the Raman coupling parameter manifested through dimensionless peak Rabi frequency and intercomponent interaction on the dynamics during the population transfer process and on the final population of the rotating condensate. During the Raman transition process, the two BECs tend to have larger overlap with each other for stronger intercomponent interaction strength.

]]>Atoms doi: 10.3390/atoms9010013

Authors: Hazel Cox Michael Melgaard Ville J. J. Syrjanen

In this paper, we investigate the maximum number of electrons that can be bound to a system of nuclei modelled by Hartree-Fock theory. We consider both the Restricted and Unrestricted Hartree-Fock models. We are taking a non-existence approach (necessary but not sufficient), in other words we are finding an upper bound on the maximum number of electrons. In giving a detailed account of the proof of Lieb’s bound [Theorem 1, Phys. Rev. A 29 (1984), 3018] for the Hartree-Fock models we establish several new auxiliary results, furthermore we propose a condition that, if satisfied, will give an improved upper bound on the maximum number of electrons within the Restricted Hartree-Fock model. For two-electron atoms we show that the latter condition holds.

]]>Atoms doi: 10.3390/atoms9010012

Authors: Claudio Mendoza Manuel A. Bautista Jérôme Deprince Javier A. García Efraín Gatuzz Thomas W. Gorczyca Timothy R. Kallman Patrick Palmeri Pascal Quinet Michael C. Witthoeft

We describe the atomic database of the xstar spectral modeling code, summarizing the systematic upgrades carried out in the past twenty years to enable the modeling of K-lines from chemical elements with atomic number Z≤30 and recent extensions to handle high-density plasmas. Such plasma environments are found, for instance, in the inner region of accretion disks round compact objects (neutron stars and black holes), which emit rich information about the system’s physical properties. Our intention is to offer a reliable modeling tool to take advantage of the outstanding spectral capabilities of the new generation of X-ray space telescopes (e.g., xrism and athena) to be launched in the coming years. Data curatorial aspects are discussed and an updated list of reference sources is compiled to improve the database provenance metadata. Two xstar spin-offs—the ISMabs absorption model and the uaDB database—are also described.

]]>Atoms doi: 10.3390/atoms9010011

Authors: Reinhold Blümel

Providing ideal conditions for the study of ion-neutral collisions, we investigate here the properties of the saturated, steady state of a three-dimensional Paul trap, loaded from a magneto-optic trap. In particular, we study three assumptions that are sometimes made under saturated, steady-state conditions: (i) The pseudopotential provides a good approximation for the number, Ns, of ions in the saturation regime, (ii) the maximum of Ns occurs at a loading rate of approximately 1 ion per rf cycle, and (iii) the ion density is approximately constant. We find that none of these assumptions are generally valid. However, based on detailed classical molecular dynamics simulations, and as a function of loading rate and trap control parameter, we show where to find convenient dynamical regimes for ion-neutral collision experiments, or how to rescale to the pseudo-potential predictions. We also investigate the fate of the electrons generated during the loading process and present a new heating mechanism, insertion heating, that in some regimes of trapping and loading may rival and even exceed the rf-heating power of the trap.

]]>Atoms doi: 10.3390/atoms9010010

Authors: Atoms Editorial Office Atoms Editorial Office

Peer review is the driving force of journal development, and reviewers are gatekeepers who ensure that Atoms maintains its standards for the high quality of its published papers [...]

]]>Atoms doi: 10.3390/atoms9010009

Authors: Marco A. Gigosos Roberto C. Mancini Juan M. Martín-González Ricardo Florido

Analysis of Stark-broadened spectral line profiles is a powerful, non-intrusive diagnostic technique to extract the electron density of high-energy-density plasmas. The increasing number of applications and availability of spectroscopic measurements have stimulated new research on line broadening theory calculations and computer simulations, and their comparison. Here, we discuss a comparative study of Stark-broadened line shapes calculated with computer simulations using non-interacting and interacting particles, and with the multi-electron radiator line shape MERL code. In particular, we focus on Ar K-shell X-ray line transitions in He- and H-like ions, i.e., He&alpha;, He&beta; and He&gamma; in He-like Ar and Ly&alpha;, Ly&beta; and Ly&gamma; in H-like Ar. These lines have been extensively used for X-ray spectroscopy of Ar-doped implosion cores in indirect- and direct-drive inertial confinement fusion (ICF) experiments. The calculations were done for electron densities ranging from 1023 to 3&times;1024 cm&minus;3 and a representative electron temperature of 1 keV. Comparisons of electron broadening only and complete line profiles including electron and ion broadening effects, as well as Doppler, are presented. Overall, MERL line shapes are narrower than those from independent and interacting particles computer simulations performed at the same conditions. Differences come from the distinctive treatments of electron broadening and are more pronounced in &alpha; line transitions. We also discuss the recombination broadening mechanism that naturally emerges from molecular dynamics simulations and its influence on the line shapes. Furthermore, we assess the impact of employing either molecular dynamics or MERL line profiles on the diagnosis of core conditions in implosion experiments performed on the OMEGA laser facility.

]]>Atoms doi: 10.3390/atoms9010008

Authors: Mauro Guerra Jorge M. Sampaio Gonçalo R. Vília César A. Godinho Daniel Pinheiro Pedro Amaro José P. Marques Jorge Machado Paul Indelicato Fernando Parente José Paulo Santos

We present relativistic ab initio calculations of fundamental parameters for atomic selenium, based on the Multiconfiguration Dirac-Fock method. In detail, fluorescence yields and subshell linewidths, both of K shell, as well as Kβ to Kα intensity ratio are provided, showing overall agreement with previous theoretical calculations and experimental values. Relative intensities were evaluated assuming the same ionization cross-section for the K-shell hole states, leading to a statistical distribution of these initial states. A method for estimating theoretical linewidths of X-ray lines, where the lines are composed by a multiplet of fine-structure levels that are spread in energy, is proposed. This method provides results that are closer to Kα1,2 experimental width values than the usual method, although slightly higher discrepancies occur for the Kβ1,3 lines. This indicates some inaccuracies in the calculation of Auger rates that have a higher contribution for partial linewidths of the subshells involved in the Kβ1,3 profile. Apart from this, the calculated value of Kβ to Kα intensity ratio, which is less sensitive to Auger rates issues, is in excellent agreement with recommended values.

]]>Atoms doi: 10.3390/atoms9010007

Authors: Ramanuj Mitra V. Srinivasa Prasannaa Bijaya K. Sahoo Nicholas R. Hutzler Minori Abe Bhanu Pratap Das

In search of suitable molecular candidates for probing the electric dipole moment (EDM) of the electron (de), a property that arises due to parity and time-reversal violating (P,T-odd) interactions, we consider the triatomic mercury hydroxide (HgOH) molecule. The impetus for this proposal is based on previous works on two systems: the recently proposed ytterbium hydroxide (YbOH) experiment that demonstrates the advantages of polyatomics for such EDM searches, and the finding that mercury halides provide the highest enhancement due to de compared to other diatomic molecules. We identify the ground state of HgOH as being in a bent geometry, and show that its intrinsic EDM sensitivity is comparable to the corresponding value for YbOH. Along with the theoretical results, we discuss plausible experimental schemes for an EDM measurement in HgOH. Furthermore, we provide pilot calculations of the EDM sensitivity for de for HgCH3 and HgCF3, that are natural extensions of HgOH.

]]>Atoms doi: 10.3390/atoms9010006

Authors: Gian Luca Lippi

Amplified Spontaneous Emission is ubiquitous in systems with optical gain and is responsible for many opportunities and shortcomings. Its role in the progression from the simplest form of thermal radiation (single emitter spontaneous emission) all the way to coherent radiation from inverted systems is still an open question. We critically review observations of photon bursts in micro- and nanolasers, in the perspective of currently used measurement techniques, in relation to threshold-related questions for small devices. Corresponding stochastic predictions are analyzed, and contrasted with burst absence in differential models, in light of general phase space properties. A brief discussion on perspectives is offered in the conclusions.

]]>Atoms doi: 10.3390/atoms9010005

Authors: Raúl O. Barrachina Francisco Navarrete Marcelo F. Ciappina

In the study of collision processes, a series of conditions is usually assumed. One of them is that the beam of projectiles is coherent in lengths greater than those of the targets against which it strikes. However, recent experimental results and theoretical analyzes have shown that this assumption can not only fail, but that it is possible to manipulate the coherence length experimentally to go from a coherent situation to an incoherent one. The most conspicuous and studied manifestation of such loss of coherence is the disappearance of interference effects. However, in the present work we show that a strong decrease can also occur in the magnitude of the cross section, not only differential but also total, due to an atomic concealment effect.

]]>Atoms doi: 10.3390/atoms9010004

Authors: Galina L. Klimchitskaya Vladimir M. Mostepanenko

We consider the out-of-thermal-equilibrium Casimir-Polder interaction between atoms of He*, Na, Cs, and Rb and a cavity wall made of sapphire coated with a vanadium dioxide film which undergoes the dielectric-to-metal phase transition with increasing wall temperature. Numerical computations of the Casimir-Polder force and its gradient as the functions of atom-wall separation and wall temperature are made when the latter exceeds the temperature of the environment. The obtained results are compared with those in experiment on measuring the gradient of the Casimir-Polder force between 87Rb atoms and a silica glass wall out of thermal equilibrium. It is shown that the use of phase-change wall material significantly increases the force magnitude and especially the force gradient, as opposed to the case of a dielectric wall.

]]>Atoms doi: 10.3390/atoms9010003

Authors: Juan M. Monti Michele A. Quinto Roberto D. Rivarola

A complete form of the post version of the continuum distorted wave (CDW) theory is used to investigate the single ionization of multielectronic atoms by fast bare heavy ion beams. The influence of the non-ionized electrons on the dynamic evolution is included through a residual target potential considered as a non-Coulomb central potential through a GSZ parametric one. Divergences found in the transition amplitude containing the short-range part of the target potential are avoided by considering, in that term exclusively, an eikonal phase instead of the continuum factor as the initial channel distortion function. In this way, we achieve the inclusion of the interaction between the target active electron and the residual target, giving place to a more complete theory. The present analysis is supported by comparisons with existing experimental electron emission spectra and other distorted wave theories.

]]>Atoms doi: 10.3390/atoms9010002

Authors: Joshua J. Michalenko Christopher M. Murzyn Joshua D. Zollweg Lydia Wermer Alan J. Van Omen Michael D. Clemenson

Forward modeling of optical spectra with absolute radiometric intensities requires knowledge of the individual transition probabilities for every transition in the spectrum. In many cases, these transition probabilities, or Einstein A-coefficients, quickly become practically impossible to obtain through either theoretical or experimental methods. Complicated electronic orbitals with higher order effects will reduce the accuracy of theoretical models. Experimental measurements can be prohibitively expensive and are rarely comprehensive due to physical constraints and sheer volume of required measurements. Due to these limitations, spectral predictions for many element transitions are not attainable. In this work, we investigate the efficacy of using machine learning models, specifically fully connected neural networks (FCNN), to predict Einstein A-coefficients using data from the NIST Atomic Spectra Database. For simple elements where closed form quantum calculations are possible, the data-driven modeling workflow performs well but can still have lower precision than theoretical calculations. For more complicated nuclei, deep learning emerged more comparable to theoretical predictions, such as Hartree&ndash;Fock. Unlike experiment or theory, the deep learning approach scales favorably with the number of transitions in a spectrum, especially if the transition probabilities are distributed across a wide range of values. It is also capable of being trained on both theoretical and experimental values simultaneously. In addition, the model performance improves when training on multiple elements prior to testing. The scalability of the machine learning approach makes it a potentially promising technique for estimating transition probabilities in previously inaccessible regions of the spectral and thermal domains on a significantly reduced timeline.

]]>Atoms doi: 10.3390/atoms9010001

Authors: Jingguang Liang Mottamchetty Venkatesh Ganjaboy S. Boltaev Rashid A. Ganeev Yu Hang Lai Chunlei Guo

Resonance-enhanced harmonics from laser-produced plasma plumes are an interesting phenomenon, whose underlying mechanism is still under debate. In particular, it is unclear whether the macroscopic dispersion properties of the plasma are the key factors for the formation of the enhancement. To shed light on this problem, we perform experiments with two-component plasmas, in which one of the components (tin) is known to be able to generate enhanced harmonics and the other component (lead) is known for altering the overall dispersion properties of the plasma medium. We compare the harmonics spectra from the plasma of pure tin and the plasma of tin/lead alloy. Depending on the driving wavelength, we observe enhanced harmonics at around 47 or 44 nm in both types of plasmas. The two enhanced regions could be attributed to resonances in singly-charged and doubly-charged tin ions, respectively. Our results indicate that the co-existence of lead plasma does not destroy the presence of the enhanced harmonics of tin plasma, and it seems to suggest that the macroscopic properties of the plasma are not the origin of the resonance-enhanced harmonics in tin.

]]>Atoms doi: 10.3390/atoms8040094

Authors: Paola Marziani Ascension del Olmo Jaime Perea Mauro D’Onofrio Swayamtrupta Panda

This paper reviews several basic emission properties of the UV emission lines observed in the spectra of quasars and type-1 active galactic nuclei, mainly as a function of the ionization parameter, metallicity, and density of the emitting gas. The analysis exploits a general-purpose 4D array of the photoionization simulations computed using the code CLOUDY, covering ionization parameter in the range 10&minus;4.5&ndash;10+1.0, hydrogen density nH&sim;107&ndash;1014 cm&minus;3, metallicity Z between 0.01 and 100 Z⊙, and column density in the range 1021&ndash;1023 cm&minus;2. The focus is on the most prominent UV emission lines observed in quasar spectra, namely Nv&lambda;1240, Siiv&lambda;1397, Oiv]&lambda;1402, Civ&lambda;1549, Heii&lambda;1640, Aliii&lambda;1860, Siiii]&lambda;1892, and Ciii]&lambda;1909, and on the physical conditions under which electron-ion impact excitation is predicted to be the dominant line producer. Photoionization simulations help constrain the physical interpretation and the domain of applicability of spectral diagnostics derived from measurements of emission line ratios, reputed to be important for estimating the ionization degree, density, and metallicity of the broad line emitting gas, as well as the relative intensity ratios of the doublet or multiplet components relevant for empirical spectral modeling.

]]>Atoms doi: 10.3390/atoms8040093

Authors: Angel T. Gisbert Nicola Piovella

Cold atomic clouds in collective atomic recoil lasing are usually confined by an optical cavity, which forces the light-scattering to befall in the mode fixed by the resonator. Here we consider the system to be in free space, which leads into a vacuum multimode collective scattering. We show that the presence of an optical cavity is not always necessary to achieve coherent collective emission by the atomic ensemble and that a preferred scattering path arises along the major axis of the atomic cloud. We derive a full vectorial model for multimode collective atomic recoil lasing in free space. Such a model consists of multi-particle equations capable of describing the motion of each atom in a 2D/3D cloud. These equations are numerically solved by means of molecular dynamic algorithms, usually employed in other scientific fields. The numerical results show that both atomic density and collective scattering patterns are applicable to the cloud’s orientation and shape and to the polarization of the incident light.

]]>Atoms doi: 10.3390/atoms8040092

Authors: Narendra Singh Sunny Aggarwal Man Mohan

We report an extensive and elaborate theoretical study of atomic properties for Pm-like and Eu-like Tungsten using Flexible Atomic Code (FAC). Excitation energies for 304 and 500 fine structure levels are presented respectively, for W11+ and W13+. Properties of the 4f-core-excited states are evaluated. Different sets of configurations are used and the discrepancies in identifications of the ground level are discussed. We evaluate transition wavelength, transition probability, oscillator strength, and collisional excitation cross section for various transitions. Comparisons are made between our calculated values and previously available results, and good agreement has been achieved. We have predicted some new energy levels and transition data where no other experimental or theoretical results are available. The present set of results should be useful in line identification and interpretation of spectra as well as in modelling of fusion plasmas.

]]>Atoms doi: 10.3390/atoms8040091

Authors: Kamel Ahmed Touati Keltoum Chenini Mohammed Tayeb Meftah

In this work, we studied the Lyman-alpha line in the presence of a magnetic field, such as the ones found at the edge of tokamaks. The emphasis is on the contribution of the motional Stark effect on line broadening, which may have comparable effects to the internal plasma microfields for the spectral line in question. The effect of the magnetic field, temperature, and the Maxwell distribution of the ion velocities and density on Lyman-alpha are studied.

]]>Atoms doi: 10.3390/atoms8040090

Authors: Yu-Shu Wang Sabyasachi Kar Yew Kam Ho

The precise estimation of atomic polarizabilities impinges upon a number of areas and processes in physical science. We calculate precisely the dynamic multipole polarizabilities of the helium and screened-helium atoms using highly correlated exponential wavefunctions based on the pseudo-state summation method. For screened environments, we consider the Debye&ndash;H&uuml;ckel potential (DHP) as the interaction potentials between the charged particles. The dynamic multipole (quadrupole, octupole, and hexadecapole) polarizabilities for the ground state of the helium atom and the multipole (quadrupole and octupole) polarizabilities of the screened-helium atom for different screening parameters are reported along with magic-zero wavelengths. The reported results for hexadecapole polarizability of the helium atom and dynamic multipole polarizability of the screened-helium atom are new and would be useful for future investigation on this topic.

]]>Atoms doi: 10.3390/atoms8040089

Authors: Andrey I. Bondarev Yury S. Kozhedub Ilya I. Tupitsyn Vladimir M. Shabaev Günter Plunien

Doubly differential cross sections for projectile ionization in fast collisions of few-electron uranium ions with the nitrogen target are calculated within the first order of the relativistic perturbation theory. A comparison with the recent measurements of the energy distribution of forward-emitted electrons is made and good agreement is found.

]]>Atoms doi: 10.3390/atoms8040088

Authors: Laurentius Windholz Tobias Binder

In a previous paper, we reported on a complete optogalvanic (OG) spectrum of a discharge burning in a La&ndash;Ar gas mixture, in the spectral range 5610&ndash;6110 &Aring; (17,851 to 16,364 cm&minus;1). Now we are able to communicate further new energy levels, found via searching for laser-induced fluorescence lines when exciting unclassified lines from the OG spectrum. We were able to find 17 new levels, and for two further levels, the line list has extended. With the help of these 19 levels, we could classify 132 spectral lines.

]]>Atoms doi: 10.3390/atoms8040087

Authors: Igor M. Savukov

Lifetime calculations of Th II J = 1.5 and 2.5 odd states are performed with configuration&ndash;interaction many-body perturbation theory (CI-MBPT). For many J = 2.5 states, lifetimes are quite accurate, but two pairs of J = 2.5 odd states and many groups of J = 1.5 states are strongly mixed, making theoretical predictions unreliable. To solve this problem, a method based on intensities is used. To relate experimental intensities to lifetimes, two parameters, one an overall coefficient of proportionality for transition rates and one temperature of the Boltzmann distribution of populations, are introduced and fitted to minimize the deviation between theoretical and intensity-derived lifetimes. For strongly mixed groups of states, the averaged lifetimes obtained from averaged transition rates were used instead of individual lifetimes in the fit. Close agreement is obtained. Then intensity branching ratios are used to extract individual lifetimes for the strongly mixed states. The resulting lifetimes are compared to available directly measured lifetimes and reasonable agreement is found, considering limited accuracy of intensity measurements. The method of intensity-based lifetime calculations with fit to theoretical lifetimes is quite general and can be applied to many complex atoms where strong mixing between multiple states exists.

]]>Atoms doi: 10.3390/atoms8040086

Authors: Tarjei Heggset Jonas R. Persson

Studies of the hyperfine anomaly has found a renewed interest with the recent development of techniques to study the properties of long chains of unstable nuclei. By using the hyperfine structure for determining the nuclear magnetic dipole moments, the hyperfine anomaly puts a limit to the accuracy. In this paper, the differential Breit&ndash;Rosenthal effect is calculated for the 6s6p3P1,2 states in 199Hg as a function of the change in nuclear radii, using the MCDHF code, GRASP2018. The differential Breit&ndash;Rosenthal effect was found to be of the order of 0.1%fm&minus;2, in most cases much less than the Bohr-Weisskopf effect. The results also indicate that large calculations might not be necessary, with the present accuracy of the experimental values for the hyperfine anomaly.

]]>Atoms doi: 10.3390/atoms8040085

Authors: Charlotte Froese Fischer Andrew Senchuk

Variational methods are used extensively in the calculation of transition rates for numerous lines in a spectrum. In the GRASP code, solutions of the multiconfiguration Dirac&ndash;Hartree&ndash;Fock (MCDHF) equations that optimize the orbitals are represented by numerical values on a grid using finite differences for integration and differentiation. The numerical accuracy and efficiency of existing procedures are evaluated and some modifications proposed with heavy elements in mind.

]]>Atoms doi: 10.3390/atoms8040084

Authors: Evgeny Stambulchik Eyal Kroupp Yitzhak Maron Victor Malka

The O I 777-nm triplet transition is often used for plasma density diagnostics. It is also employed in nonlinear optics setups for producing quasi-comb structures when pumped by a near-resonant laser field. Here, we apply computer simulations to situations of the radiating atom subjected to the plasma microfields, laser fields, and both perturbations together. Our results, in particular, resolve a controversy related to the spectral line anomalously broadened in some laser-produced plasmas. The importance of using time-dependent density matrix is discussed.

]]>Atoms doi: 10.3390/atoms8040083

Authors: Dibyendu Mahato Lalita Sharma Rajesh Srivastava

A detailed study of elastic scattering of electrons and positrons from a hydrogen sulphide (H2S) molecule is presented using the method of partial wave phase shift analysis with suitably chosen complex optical potentials. The important aspect of our present work is that we uniquely obtain static potential in an analytical form and use it along with exchange (only for electron), polarization and purely imaginary absorption potentials to define the complex optical potential. The static potential is evaluated by obtaining charge density from the H2S molecule using the molecular wavefunction represented through an accurate analytical form of the Gaussian orbitals. The primary aim of our study is to test our present approach, as applied to the electron and positron scattering from H2S. Therefore, the results for electron and positron impact differential, integral, momentum-transfer, absorption and total cross sections are obtained for the incident energies in the range of 10&ndash;500 eV. Comparisons of these different types of cross section results with the available measurements and other calculations show good agreement, which suggests the applicability of our present approach.

]]>Atoms doi: 10.3390/atoms8040082

Authors: Bhupendra Singh Suman Prajapati Bhartendu K. Singh R. Shanker

The impact energy and angular dependence of L X-rays of a thick polycrystalline tungsten (W; atomic number, Z = 74) target induced by 15&ndash;25 keV electrons has been measured at different angles varying from 15&deg; to 75&deg; at intervals of 5&deg; using a Si PIN photodiode detector. The variation of measured relative intensity of Ll, L&alpha;, L&beta; and L&gamma; characteristic lines as a function of incidence angle is found to be anisotropic and the measured variation compares well with the PENELOPE simulation results. The angular variation of intensity ratio of Ll/L&alpha; and L&beta;/L&alpha; shows anisotropic distribution, whereas the angular variation of the L&gamma;/L&alpha; ratio exhibits almost isotropic distribution within the uncertainty of measurements. These measured ratios are found to be in good agreement with Monte Carlo (MC) calculations. The measured intensity ratios of L&beta;/L&alpha; and L&gamma;/L&alpha; at a given incidence angle show a linear dependence with impact energy and exhibit good agreement with simulation results; however, the measured intensity ratio of Ll/L&alpha; shows a non-linear variation with the impact energy and yields poor agreement with theoretical calculations.

]]>Atoms doi: 10.3390/atoms8040081

Authors: Hirotaka Tanaka Keisuke Fujii Taiichi Shikama Shigeru Morita Motoshi Goto Masahiro Hasuo

We developed an echelle spectrometer for the simultaneous observation of the whole visible range with a high instrumental resolution, for example, 0.055 nm (full width at the half maximum) at 400 nm and 0.10 nm at 750 nm. With the spectrometer, the emission from an ablation cloud of an aluminum pellet injected into a high-temperature plasma generated in the Large Helical Device (LHD) was measured. We separated the emission lines into Al I, II, III and IV groups, and estimated the electron temperature and density of the ablation cloud from the line intensity distribution and Stark broadening respectively, of each of the Al I, II and III groups. We also determined the Stark broadening coefficients of many Al II and III lines from the respective Stark widths with the estimated electron temperature and density.

]]>Atoms doi: 10.3390/atoms8040080

Authors: Elena V. Gryzlova Maksim D. Kiselev Maria M. Popova Anton A. Zubekhin Giuseppe Sansone Alexei N. Grum-Grzhimailo

Sequential photoionization of krypton by intense extreme ultraviolet femtosecond pulses is studied theoretically for the photon energies below the 3d excitation threshold. This regime with energetically forbidden Auger decay is characterized by special features, such as time scaling of the level population. The model is based on the solution of rate equations with photoionization cross sections of krypton in different charge and multiplet states determined using R-matrix calculations. Predictions of the ion yields and photoelectron spectra for various photon fluence are presented and discussed.

]]>Atoms doi: 10.3390/atoms8040079

Authors: Sukhjit Singh Jyoti Bindiya Arora B. K. Sahoo Yan-mei Yu

Active clocks could provide better stabilities during initial stages of measurements over passive clocks, in which stabilities become saturated only after long-term measurements. This unique feature of an active clock has led to search for suitable candidates to construct such clocks. The other challenging task of an atomic clock is to reduce its possible systematics. A major part of the optical lattice atomic clocks based on neutral atoms are reduced by trapping atoms at the magic wavelengths of the optical lattice lasers. Keeping this in mind, we find the magic wavelengths between all possible hyperfine levels of the transitions in Rb and Cs atoms that were earlier considered to be suitable for making optical active clocks. To validate the results, we give the static dipole polarizabilities of Rb and Cs atoms using the electric dipole transition amplitudes that are used to evaluate the dynamic dipole polarizabilities and compare them with the available literature values.

]]>Atoms doi: 10.3390/atoms8040078

Authors: Anand K. Bhatia

A scattering process can be a natural process or a process carried out in a laboratory. The scattering of particles from targets has resulted in important discoveries in physics. We discuss various scattering theories of electrons and positrons and their applications to elastic scattering, resonances, photoabsorption, excitation, and solar and stellar atmospheres. Among the most commonly employed approaches are the Kohn variational principle, close-coupling approximation, method of polarized orbitals, R-matrix formulation, and hybrid theory. In every formulation, an attempt is made to include exchange, long-range and short-range correlations, and to make the approach variationally correct. The present formulation, namely, hybrid theory, which is discussed in greater detail compared to other approximations, includes exchange, long-range correlations, and short-range correlations at the same time, and is variationally correct. It was applied to calculate the phase shifts for elastic scattering, the resonance parameters of two-electron systems, photoabsorption in two-electron systems, excitation of atomic hydrogen by an electron and positron impact, and to study the opacity of the Sun&rsquo;s atmosphere. Calculations of polarizabilities, Rydberg states, and bound states of atoms are also discussed.

]]>Atoms doi: 10.3390/atoms8040077

Authors: José Tito Mendonça Hugo Terças João D. Rodrigues Arnaldo Gammal

We consider the Casimir force between two vortices due to the presence of density fluctuations induced by turbulent modes in a Bose&ndash;Einstein condensate. We discuss the cases of unbounded and finite condensates. Turbulence is described as a superposition of elementary excitations (phonons or BdG modes) in the medium. Expressions for the Casimir force between two identical vortex lines are derived, assuming that the vortices behave as point particles. Our analytical model of the Casimir force is confirmed by numerical simulations of the Gross&ndash;Pitaevskii equation, where the finite size of the vortices is retained. Our results are valid in the mean-field description of the turbulent medium. However, the Casimir force due to quantum fluctuations can also be estimated, assuming the particular case where the occupation number of the phonon modes in the condensed medium is reduced to zero and only zero-point fluctuations remain.

]]>Atoms doi: 10.3390/atoms8040076

Authors: Damien Albert Bobby K. Antony Yaye Awa Ba Yuri L. Babikov Philippe Bollard Vincent Boudon Franck Delahaye Giulio Del Zanna Milan S. Dimitrijević Brian J. Drouin Marie-Lise Dubernet Felix Duensing Masahiko Emoto Christian P. Endres Alexandr Z. Fazliev Jean-Michel Glorian Iouli E. Gordon Pierre Gratier Christian Hill Darko Jevremović Christine Joblin Duck-Hee Kwon Roman V. Kochanov Erumathadathil Krishnakumar Giuseppe Leto Petr A. Loboda Anastasiya A. Lukashevskaya Oleg M. Lyulin Bratislav P. Marinković Andrew Markwick Thomas Marquart Nigel J. Mason Claudio Mendoza Tom J. Millar Nicolas Moreau Serguei V. Morozov Thomas Möller Holger S. P. Müller Giacomo Mulas Izumi Murakami Yury Pakhomov Patrick Palmeri Julien Penguen Valery I. Perevalov Nikolai Piskunov Johannes Postler Alexei I. Privezentsev Pascal Quinet Yuri Ralchenko Yong-Joo Rhee Cyril Richard Guy Rixon Laurence S. Rothman Evelyne Roueff Tatiana Ryabchikova Sylvie Sahal-Bréchot Paul Scheier Peter Schilke Stephan Schlemmer Ken W. Smith Bernard Schmitt Igor Yu. Skobelev Vladimir A. Srecković Eric Stempels Serguey A. Tashkun Jonathan Tennyson Vladimir G. Tyuterev Charlotte Vastel Veljko Vujčić Valentine Wakelam Nicholas A. Walton Claude Zeippen Carlo Maria Zwölf

This paper presents an overview of the current status of the Virtual Atomic and Molecular Data Centre (VAMDC) e-infrastructure, including the current status of the VAMDC-connected (or to be connected) databases, updates on the latest technological development within the infrastructure and a presentation of some application tools that make use of the VAMDC e-infrastructure. We analyse the past 10 years of VAMDC development and operation, and assess their impact both on the field of atomic and molecular (A&amp;M) physics itself and on heterogeneous data management in international cooperation. The highly sophisticated VAMDC infrastructure and the related databases developed over this long term make them a perfect resource of sustainable data for future applications in many fields of research. However, we also discuss the current limitations that prevent VAMDC from becoming the main publishing platform and the main source of A&amp;M data for user communities, and present possible solutions under investigation by the consortium. Several user application examples are presented, illustrating the benefits of VAMDC in current research applications, which often need the A&amp;M data from more than one database. Finally, we present our vision for the future of VAMDC.

]]>Atoms doi: 10.3390/atoms8040075

Authors: Enda Scally Fergal O’Reilly Patrick Hayden Isaac Tobin Gerry O’Sullivan

The results of a systematic study performed on Pb-Sn alloys of concentration 65&ndash;35% and 94&ndash;6% by weight along with spectra from pure Pb and Sn in the wavelength range of 9.8&ndash;18 nm are presented. The dynamics of the Nd:YAG laser produced plasma were changed by varying the focused spot size and input energy of the laser pulse; the laser irradiance at the target varied from 7.3 &times; 109 W cm&minus;2 to 1.2 &times; 1012 W cm&minus;2. The contributing ion stages and line emission are identified using the steady state collisional radiative model of Colombant and Tonon, and the Cowan suite of atomic structure codes. The Sn spectrum was dominated in each case by the well-known unresolved transition array (UTA) near 13.5 nm. However, a surprising result was the lack of any enhancement or narrowing of this feature at low concentrations of Sn in the alloy spectra whose emission was essentially dominated by Pb ions.

]]>Atoms doi: 10.3390/atoms8040074

Authors: Joël Rosato

We report on hydrogen line shape calculations in the presence of an external magnetic field, at conditions such that the quadratic Zeeman effect is important. The latter is described through a term proportional to B2 in the Hamiltonian, accounting for atomic diamagnetism. It provides a shift and an asymmetry on Lorentz triplets, and it leads to the occurrence of forbidden components. Motivated by investigations performed at the fifth edition of the Spectral Line Shape in Plasmas (SLSP5) code comparison workshop, we perform new calculations of hydrogen Lyman line profiles. Field values representative of magnetized white dwarf atmosphere conditions are taken. The calculations are done using a computer simulation technique, designed for Stark broadening modeling. A discussion of the results is done in the framework of plasma diagnostics.

]]>Atoms doi: 10.3390/atoms8040073

Authors: Elmar Träbert

In online data bases, the entries on extreme ultraviolet (EUV) spectra of Ca are much more sparse than those of neighbouring elements such as Ar, K, Sc and Ti. This may be a result of experimental problems with Ca in the laboratory as well as of the limited role of multiply charged Ca ions in solar observations. Beam-foil EUV spectra of Ca and K are presented that provide survey data of a single element each.

]]>Atoms doi: 10.3390/atoms8040072

Authors: Suman Prajapati Bhupendra Singh Sunil Kumar Bhartendu Kumar Singh C. A. Quarles R. Shanker

New results are reported on the measurements of absolute double differential cross sections (DDCSs) of bremsstrahlung produced from 4.0 keV electrons incident on free Ar atoms in the angular detection range of 45&deg;&ndash;120&deg;. A significant reduction of the thick target bremsstrahlung (TTB) of the chamber wall and of the photon transmission windows has been achieved by modifying the experimental set-up used previously; a large reduction of TTB in the present experiments is supported by the results of our model calculations for the ratio of TTB background to the normal bremsstrahlung (NB) spectrum carried out for the employed geometry of the experimental set-up. The results of photon energy distribution measured at different angles and those of angular distributions of photons of a given energy are compared with theoretical predictions of Kissel&ndash;Quarles&ndash;Pratt (KQP) theory for ordinary bremsstrahlung and with predictions of total bremsstrahlung including polarization bremsstrahlung (PBS) of the stripping approximation (SA). A satisfactory agreement observed between experiment and predictions using SA theory for absolute DDCSs of bremsstrahlung provides evidence for an appreciable contribution of polarization bremsstrahlung at the considered impact energy of electrons on one hand, while on the other hand, it exhibits a large discrepancy (about a factor of 2) in DDCSs of bremsstrahlung photons obtained by experiment and by KQP theory for photon energy distributions at all detection angles measured in these experiments. In addition, present results of the angular dependence of photons of different energies show anisotropic distributions and they are found to be in reasonable agreement with both KQP and SA theories. The satisfactory agreement between experiment and theory for angular distributions is an indication of a significant reduction of the background produced from TTB photons.

]]>Atoms doi: 10.3390/atoms8040071

Authors: Izumi Murakami Masatoshi Kato Masahiko Emoto Daiji Kato Hiroyuki A. Sakaue Tomoko Kawate

The National Institute for Fusion Science (NIFS) has compiled and developed atomic and molecular numerical databases for various collision processes and makes it accessible from the internet to the public. The database contains numerical data of cross sections and rate coefficients for electron collision or ion collisions with atoms and molecules, attached with bibliographic information on their data sources. The database system provides query forms to search data, and numerical data are retrievable. The graphical output is helpful to understand energy dependence of cross sections and temperature dependence of rate coefficients obtained by various studies. All data are compiled mainly from published literature, and data sources can be tracked by the bibliographic information. We also have data of sputtering yields and back-scattering coefficients for solid surfaces collided by ions in the database. All data in the database are applicable to understand atomic and molecular processes in various plasmas, such as fusion plasma, astrophysical plasma and applied plasma, as well as for understanding plasma&ndash;surface interaction in plasmas.

]]>Atoms doi: 10.3390/atoms8040070

Authors: Florin Lucian Constantin

This article proposes a new method for sensing THz waves that can allow electric field measurements traceable to the International System of Units and to the fundamental physical constants by using the comparison between precision measurements with cold trapped HD+ ions and accurate predictions of molecular ion theory. The approach exploits the lightshifts induced on the two-photon rovibrational transition at 55.9 THz by a THz wave around 1.3 THz, which is off-resonantly coupled to the HD+ fundamental rotational transition. First, the direction and the magnitude of the static magnetic field applied to the ion trap is calibrated using Zeeman spectroscopy of HD+. Then, a set of lightshifts are converted into the amplitudes and the phases of the THz electric field components in an orthogonal laboratory frame by exploiting the sensitivity of the lightshifts to the intensity, the polarization and the detuning of the THz wave to the HD+ energy levels. The THz electric field measurement uncertainties are estimated for quantum projection noise-limited molecular ion frequency measurements with the current accuracy of molecular ion theory. The method has the potential to improve the sensitivity and accuracy of electric field metrology and may be extended to THz magnetic fields and to optical fields.

]]>Atoms doi: 10.3390/atoms8040069

Authors: Yaye-Awa Ba Marie-Lise Dubernet Nicolas Moreau Carlo Maria Zwölf

The BASECOL database has been created and scientifically enriched since 2004. It contains collisional excitation rate coefficients of molecules for application to the interstellar medium and to cometary atmospheres. Recently, major technical updates have been performed in order to be compliant with international standards for management of data and in order to provide a more friendly environment to query and to present the data. The current paper aims at presenting the key features of the technical updates and to underline the compatibility of BASECOL database with the Virtual Atomic and Molecular Data Center. This latter aims to interconnect atomic and molecular databases, thus providing a single location where users can access atomic and molecular data.

]]>Atoms doi: 10.3390/atoms8040068

Authors: Sultana Nahar

The online atomic database of NORAD-Atomic-Data, where NORAD stands for Nahar OSU Radiative, is part of the data sources of the two international collaborations of the Opacity Project (OP) and the Iron Project (IP). It contains large sets of parameters for the dominant atomic processes in astrophysical plasmas, such as, (i) photo-excitation, (ii) photoionization, (iii) electron&ndash;ion recombination, (iv) electron&ndash;impact excitations. The atomic parameters correspond to tables of energy levels, level-specific total photoionization cross-sections, partial photoionization cross-sections of all bound states for leaving the residual ion in the ground state, partial cross-sections of the ground state for leaving the ion in various excited states, total level-specific electron&ndash;ion recombination rate coefficients that include both the radiative and dielectronic recombination, total recombination rate coefficients summed from contributions of an infinite number of recombined states, total photo-recombination cross-sections and rates with respect to photoelectron energy, transition probabilities, lifetimes, collision strengths. The database was created after the first two atomic databases, TOPbase under the OP and TIPbase under the IP. Hence the contents of NORAD-Atomic-Data are either new or from repeated calculations using a much larger wave function expansion making the data more complete. The results have been obtained from the R-matrix method using the close-coupling approximation developed under the OP and IP, and from atomic structure calculations using the program SUPERSTRUCTURE. They have been compared with available published results which have been obtained theoretically and experimentally, and are expected to be of high accuracy in general. All computations were carried out using the computational facilities at the Ohio Supercomputer Center (OSC) starting in 1990. At present it contains atomic data for 154 atomic species, 98 of which are lighter atomic species with nuclear charge Z &le; 28 and 56 are heavier ones with Z &gt; 28. New data are added with publications.

]]>Atoms doi: 10.3390/atoms8040067

Authors: Stéphane Carniato Jean-Marc Bizau Denis Cubaynes Eugene T. Kennedy Ségolène Guilbaud Emma Sokell Brendan McLaughlin Jean-Paul Mosnier

This article presents N2+ fragment yields following nitrogen K-shell photo-absorption in the NH+ molecular ion measured at the SOLEIL synchrotron radiation facility in the photon energy region 390&ndash;450 eV. The combination of the high sensitivity of the merged-beam, multi-analysis ion apparatus (MAIA) with the high spectral resolution of the PLEIADES beamline helped to resolve experimentally vibrational structures of highly excited [N1s&minus;1H]*+ electronic states with closed or open-shell configurations. The assignment of the observed spectral features was achieved with the help of density functional theory (DFT) and post-Hartree Fock Multiconfiguration Self-Consistent-Field/Configuration Interaction (MCSCF/CI) ab-initio theoretical calculations of the N1s core-to-valence and core-to-Rydberg excitations, including vibrational dynamics. New resonances were identified compared to previous work, owing to detailed molecular modeling of the vibrational, spin-orbit coupling and metastable state effects on the spectra. The latter are evidenced by spectral contributions from the 4&Sigma;&minus; electronic state which lies 0.07 eV above the NH+2&Pi; ground state.

]]>Atoms doi: 10.3390/atoms8040066

Authors: Christophe Morisset Valentina Luridiana Jorge García-Rojas Verónica Gómez-Llanos Manuel Bautista Claudio Mendoza

PyNeb is a Python package widely used to model emission lines in gaseous nebulae. We take advantage of its object-oriented architecture, class methods, and historical atomic database to structure a practical environment for atomic data assessment. Our aim is to reduce the uncertainties in the parameter space (line ratio diagnostics, electron density and temperature, and ionic abundances) arising from the underlying atomic data by critically selecting the PyNeb default datasets. We evaluate the questioned radiative-rate accuracy of the collisionally excited forbidden lines of the N- and P-like ions (O ii, Ne iv, S ii, Cl iii, and Ar iv), which are used as density diagnostics. With the aid of observed line ratios in the dense NGC 7027 planetary nebula and careful data analysis, we arrive at emissivity ratio uncertainties from the radiative rates within 10%, a considerable improvement over a previously predicted 50%. We also examine the accuracy of an extensive dataset of electron-impact effective collision strengths for the carbon isoelectronic sequence recently published. By estimating the impact of the new data on the pivotal [N ii] and [O iii] temperature diagnostics and by benchmarking the collision strength with a measured resonance position, we question their usefulness in nebular modeling. We confirm that the effective-collision-strength scatter of selected datasets for these two ions does not lead to uncertainties in the temperature diagnostics larger than 10%.

]]>Atoms doi: 10.3390/atoms8040065

Authors: Valeriy K. Dolmatov

Initial insights into spin-polarized photoelectron fluxes from fullerene anions are presented here. Both the angle-dependent and angle-integrated degrees of spin polarization of said photoelectron fluxes are discussed. Empty C60&minus;(2p) and endohedral H@C60&minus;(2p) and He@C60&minus;(2p) anions, where the attached electron resides in a 2p state, are chosen as case studies. We uncover the characteristics of the phenomenon in the framework of a semi-empirical methodology where the C60 cage is modeled by a spherical annular potential, rather than aiming at a rigorous study. It is found that the spin-polarization degree of photoelectron fluxes from fullerene anions can reach large values, including a nearly complete polarization, at/in specific values/domains of the photoelectron momentum. This is shown to correlate with an inherent feature of photoionization of fullerenes, the abundance of resonances, known as confinement resonances, in their photodetachment spectra owing to a large empty space inside fullerenes. Moreover, the results obtained can serve as a touchstone for future studies of the phenomenon by more rigorous theories and/or experiments to reveal the significance of interactions omitted in the present study.

]]>Atoms doi: 10.3390/atoms8040064

Authors: Cristóbal Colón María Isabel de Andrés-García Lucía Isidoro-García Andrés Moya

Using Griem&rsquo;s semi-empirical approach, we have calculated the Stark broadening parameters (line widths and shifts) of 35 UV&ndash;Blue spectral lines of neutral vanadium (V I). These lines have been detected in the Sun, the metal-poor star HD 84937, and Arcturus, among others. In addition, these parameters are also relevant in industrial and laboratory plasma. The matrix elements required were obtained using the relativistic Hartree&ndash;Fock (HFR) method implemented in Cowan&rsquo;s code.

]]>