# Energy Considerations of Classical Electromagnetic Zero-Point Radiation and a Specific Probability Calculation in Stochastic Electrodynamics

## Abstract

**:**

## 1. Introduction

## 2. Extracting Energy from the Vacuum

## 3. A Calculational Method within SED

## 4. Concluding Remarks

## Funding

## Conflicts of Interest

## References

- Marshall, T.W. Random electrodynamics. Proc. R. Soc. Lond. Ser. A
**1963**, 276, 475–491. [Google Scholar] - Marshall, T.W. Statistical electrodynamics. Proc. Camb. Philos. Soc.
**1965**, 61, 537–546. [Google Scholar] [CrossRef] - Marshall, T.W. A classical treatment of blackbody radiation. Nuovo Cimento
**1965**, 38, 206–215. [Google Scholar] [CrossRef] - Boyer, T.H. Derivation of the blackbody radiation spectrum without quantum assumptions. Phys. Rev.
**1969**, 182, 1374–1383. [Google Scholar] [CrossRef] - Boyer, T.H. Classical statistical thermodynamics and electromagnetic zero-point radiation. Phys. Rev.
**1969**, 186, 1304–1318. [Google Scholar] [CrossRef] - Boyer, T.H. General connection between random electrodynamics and quantum electrodynamics for free electromagnetic fields and for dipole oscillator systems. Phys. Rev. D
**1975**, 11, 809–830. [Google Scholar] [CrossRef] - Boyer, T.H. Scaling symmetry and thermodynamic equilibrium for classical electromagnetic radiation. Found. Phys.
**1989**, 19, 1371–1383. [Google Scholar] [CrossRef] - Cole, D.C. Classical electrodynamic systems interacting with classical electromagnetic random radiation. Found. Phys.
**1990**, 20, 225–240. [Google Scholar] [CrossRef] - Cole, D.C.; Zou, Y. Quantum mechanical ground state of hydrogen obtained from classical electrodynamics. Phys. Lett. A
**2003**, 317, 14–20. [Google Scholar] [CrossRef] [Green Version] - Cole, D.C. Simulation results related to stochastic electrodynamics. AIP Conf. Proc.
**2006**, 810, 99–113. [Google Scholar] - Nieuwenhuizen, T.M.; Liska, M.T. Simulation of the hydrogen ground state in stochastic electrodynamics. Phys. Scr.
**2015**, 2015, 014006. [Google Scholar] [CrossRef] - Nieuwenhuizen, T.M.; Liska, M.T. Simulation of the hydrogen ground state in stochastic electrodynamics-2: Inclusion of relativistic corrections. Found. Phys.
**2015**, 45, 1190–1202. [Google Scholar] [CrossRef] - Cole, D.C.; Puthoff, H.E. Extracting energy and heat from the vacuum. Phys. Rev. E
**1993**, 48, 1562–1565. [Google Scholar] [CrossRef] - Boyer, T.H. Stochastic electrodynamics: The closest classical approximation to quantum theory. Atoms
**2019**, 7, 29. [Google Scholar] [CrossRef] - Cole, D.C.; Zou, Y. Simulation study of aspects of the classical hydrogen atom interacting with electromagnetic radiation: Circular orbits. J. Sci. Comput.
**2004**, 20, 43–68. [Google Scholar] [CrossRef] - Boyer, T.H. Random electrodynamics: The theory of classical electrodynamics with classical electromagnetic zero–point radiation. Phys. Rev. D
**1975**, 11, 790–808. [Google Scholar] [CrossRef] - Cole, D.C. Reinvestigation of the thermodynamics of blackbody radiation via classical physics. Phys. Rev. A
**1992**, 45, 8471–8489. [Google Scholar] [CrossRef] - Cole, D.C. Derivation of the classical electromagnetic zero–point radiation spectrum via a classical thermodynamic operation involving van der waals forces. Phys. Rev. A
**1990**, 42, 1847–1862. [Google Scholar] [CrossRef] - Cole, D.C. Entropy and other thermodynamic properties of classical electromagnetic thermal radiation. Phys. Rev. A
**1990**, 42, 7006–7024. [Google Scholar] [CrossRef] - Cole, D.C. Connection of the classical electromagnetic zero–point radiation spectrum to quantum mechanics for dipole harmonic oscillators. Phys. Rev. A
**1992**, 45, 8953–8956. [Google Scholar] [CrossRef] - De la Peña, L.; Cetto, A.M. The Quantum Dice—An Introduction to Stochastic Electrodynamics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Cole, D.C. Essays on Formal Aspects of Electromagnetic Theory; Lakhtakia, A., Ed.; Compendium Book; World Scientific: Singapore, 1993; pp. 501–532. [Google Scholar]
- Cole, D.C. Thermodynamics of blackbody radiation via classical physics for arbitrarily shaped cavities with perfectly conducting walls. Found. Phys.
**2000**, 30, 1849–1867. [Google Scholar] [CrossRef] - Feynman, R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; McGraw–Hill: New York, NY, USA, 1965. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Forward, R.L. Extracting electrical energy from the vacuum by cohesion of charged foliated conductors. Phys. Rev. B (Condens. Matter)
**1984**, 30, 1700–1702. [Google Scholar] [CrossRef] - Puthoff, H.E. Energetic vacuum. implications for energy research. Specul. Sci. Technol.
**1990**, 13, 247. [Google Scholar] - Casimir, H.B.G. On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wet.
**1948**, 51, 793–795. [Google Scholar] - Boyer, T.H. Quantum zero-point energy and long-range forces. Ann. Phys.
**1970**, 56, 474–503. [Google Scholar] [CrossRef] - Rueda, A. Survey and examination of an electromagnetic vacuum accelerating effect and its astrophysical consequences. Space Sci. Rev.
**1990**, 53, 223–345. [Google Scholar] [CrossRef] - Cole, D.C. Possible thermodynamic law violations and astrophysical issues for secular acceleration of electrodynamic particles in the vacuum. Phys. Rev. E
**1995**, 51, 1663–1674. [Google Scholar] [CrossRef] - Milonni, P.W. The Quantum Vacuum. An Introduction to Quantum Electrodynamics; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Haisch, B.; Moddel, G. Quantum Vacuum Energy Extraction. U.S. Patent 7,379,286, 27 May 2008. [Google Scholar]
- Planck, M. The Theory of Heat Radiation; Dover: New York, NY, USA, 1959. [Google Scholar]
- Einstein, A.; Hopf, L. On a Theorem of the Probability Calculus and Its Application in the Theory of Radiation. Ann. Physik
**1910**, 33, 1096–1104. [Google Scholar] [CrossRef] - Einstein, A.; Hopf, L. Statistical Investigation of a Resonator’s Motion in a Radiation Field. Ann. Physik
**1910**, 33, 1105–1115. [Google Scholar] [CrossRef] - Haroche, S.; Kleppner, D. Cavity quantum electrodynamics. Phys. Today
**1989**, 42, 24–30. [Google Scholar] [CrossRef] - Cole, D.C. Correlation functions for homogeneous, isotropic random classical electromagnetic radiation and the electromagnetic fields of a fluctuating classical electric dipole. Phys. Rev. D
**1986**, 33, 2903–2915. [Google Scholar] [CrossRef] - Cole, D.C. Thermal effects of acceleration for a spatially extended electromagnetic system in classical electromagnetic zero-point radiation: Transversely positioned classical oscillators. Phys. Rev. D
**1987**, 35, 562–583. [Google Scholar] [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cole, D.C.
Energy Considerations of Classical Electromagnetic Zero-Point Radiation and a Specific Probability Calculation in Stochastic Electrodynamics. *Atoms* **2019**, *7*, 50.
https://doi.org/10.3390/atoms7020050

**AMA Style**

Cole DC.
Energy Considerations of Classical Electromagnetic Zero-Point Radiation and a Specific Probability Calculation in Stochastic Electrodynamics. *Atoms*. 2019; 7(2):50.
https://doi.org/10.3390/atoms7020050

**Chicago/Turabian Style**

Cole, Daniel C.
2019. "Energy Considerations of Classical Electromagnetic Zero-Point Radiation and a Specific Probability Calculation in Stochastic Electrodynamics" *Atoms* 7, no. 2: 50.
https://doi.org/10.3390/atoms7020050