Special Issue "Atmospheric Measurements Using Unmanned Systems"

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Atmospheric Techniques, Instruments, and Modeling".

Deadline for manuscript submissions: 12 February 2022.

Special Issue Editors

Dr. Peter Webley
E-Mail Website
Guest Editor
Geophysical Institute, 903 Koyukuk Drive, University of Alaska, Fairbanks, AK 99775-7320, USA
Interests: remote sensing natural hazard assessment; aerosol dispersion modeling; advanced visualization of natural hazards; scenario planning for potential impact from volcanic events; uncertainty analysis applied to natural hazards; real-time event detection methodologies from satellite remote sensing
Special Issues, Collections and Topics in MDPI journals
Dr. Jack Elston
E-Mail Website
Guest Editor
Black Swift Technologies LLC, Boulder, CO 80301, USA
Interests: unmanned aircraft; control systems; meteorology
Special Issues, Collections and Topics in MDPI journals
Dr. Richard Hann
E-Mail Website
Guest Editor
Department of Engineering Cybernetics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
Interests: atmospheric icing; drones; remote sensing; photogrammetry; wind estimation; meteorology; cryosphere; Svalbard; computational fluid dynamics
Special Issues, Collections and Topics in MDPI journals
Dr. Pablo Rodríguez-Gonzálvez
E-Mail Website
Guest Editor
Department of Mining Technology, Topography and Structures, University of León, Avda. Astorga, s/n, 24401 Ponferrada, Spain
Interests: photogrammetry; drones; laser scanning; radiometric calibration; remote sensing; RGB-D sensors; 3D modeling; mobile mapping; metrology; verification; inspection; quality control
Special Issues, Collections and Topics in MDPI journals
Prof. Dr. Jamey Jacob
E-Mail Website
Guest Editor
Unmanned Systems Research Institute, School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA
Interests: in situ and remote sensing with UAS; ABL observations; unmanned traffic management; real-time atmospheric observations and reporting; weather hazards for UAS; natural hazard measurement, assessment, and mitigation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The opportunities that unmanned systems provide to collect real-time observations of the atmosphere are growing. Both small and large unmanned systems have been developed to support atmospheric scientific research as well as operational monitoring for decision support systems. Large-scale systems can provide critical timely observations of the atmosphere during significant events such as hurricanes and severe storms, while small innovative unmanned aircraft systems (UAS) can be adapted to include high-precision sensors to collect high-frequency measurements of the atmosphere, which was not possible with previous sensor systems.

This Special Issue is addressed to the two communities of Atmosphere and Drones. We are interested in papers that focus on all aspects of the application of unmanned systems for atmospheric measurements. These include, but are not limited to, experimental campaigns highlighting the testing and evaluation of new sensors, the development of new aircraft to specifically support collected atmospheric observations, new data-processing and collection methodologies using large and/or small unmanned systems, and lessons learned/best practices to integrate unmanned systems into atmospheric-monitoring decision support systems.

We look forward to your submissions and to achieving a Special Issue representing the growing community of scientists involved in atmospheric science measurements and observations using these innovative unmanned systems.

You may choose our Joint Special Issue in Drones.

Yours,

Dr. Peter Webley
Dr. Jack Elston
Dr. Richard Hann
Prof. Dr. Diego González-Aguilera
Dr. Pablo Rodríguez-Gonzálvez
Prof. Jamey Jacob
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Unmanned Aircraft System(s) (UAS)
  • Unmanned Aerial Vehicle(s) (UAV)
  • Drones
  • Remotely Piloted Aircraft System (RPAS)
  • Emerging Technologies
  • Remote Sensing
  • Environmental Intelligence
  • Atmospheric Observations
  • Field Measurements

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Concept and Feasibility Evaluation of Distributed Sensor-Based Measurement Systems Using Formation Flying Multicopters
Atmosphere 2021, 12(7), 874; https://doi.org/10.3390/atmos12070874 - 06 Jul 2021
Viewed by 652
Abstract
Unmanned aerial vehicles (UAVs) have been used for increasing research applications in atmospheric measurements. However, most current solutions for these applications are based on a single UAV with limited payload capacity. In order to address the limitations of the single UAV-based approach, this [...] Read more.
Unmanned aerial vehicles (UAVs) have been used for increasing research applications in atmospheric measurements. However, most current solutions for these applications are based on a single UAV with limited payload capacity. In order to address the limitations of the single UAV-based approach, this paper proposes a new concept of measurements using tandem flying multicopters as a distributed sensor platform. Key challenges of the proposed concept are identified including the relative position estimation and control in wind-perturbed outdoor environment and the precise alignment of payloads. In the proposed concept, sliding mode control is chosen as the relative position controller and a gimbal stabilization system is introduced to achieve fine payload alignment. The characterization of the position estimation sensors (including global navigation satellite system and real-time kinematics) and flight controller is carried out using different UAVs (a DJI Matrice M600 Pro Hexacopter and Tarot X4 frame based Quadcopter) under different wind levels. Based on the experimental data, the performance of the sliding mode controller and the performance of the gimbal stabilization system are evaluated in a hardware-in-the-loop simulation environment (called ELISSA). Preliminary achievable control accuracies of the relative position and attitude of subsystems in the proposed concept are estimated based on experimental results. Full article
(This article belongs to the Special Issue Atmospheric Measurements Using Unmanned Systems)
Show Figures

Figure 1

Article
Vertical Profiles of Atmospheric Species Concentrations and Nighttime Boundary Layer Structure in the Dry Season over an Urban Environment in Central Amazon Collected by an Unmanned Aerial Vehicle
Atmosphere 2020, 11(12), 1371; https://doi.org/10.3390/atmos11121371 - 18 Dec 2020
Cited by 3 | Viewed by 1105
Abstract
Nighttime vertical profiles of ozone, PM2.5 and PM10 particulate matter, carbon monoxide, temperature, and humidity were collected by a copter-type unmanned aerial vehicle (UAV) over the city of Manaus, Brazil, in central Amazon during the dry season of 2018. The vertical [...] Read more.
Nighttime vertical profiles of ozone, PM2.5 and PM10 particulate matter, carbon monoxide, temperature, and humidity were collected by a copter-type unmanned aerial vehicle (UAV) over the city of Manaus, Brazil, in central Amazon during the dry season of 2018. The vertical profiles were analyzed to understand the structure of the urban nighttime boundary layer (NBL) and pollution within it. The ozone concentration, temperature, and humidity had an inflection between 225 and 350 m on most nights, representing the top of the urban NBL. The profile of carbon monoxide concentration correlated well with the local evening vehicular congestion of a modern transportation fleet, providing insight into the surface-atmosphere dynamics. In contrast, events of elevated PM2.5 and PM10 concentrations were not explained well by local urban emissions, but rather by back trajectories that intersected regional biomass burning. These results highlight the potential of the emerging technologies of sensor payloads on UAVs to provide new constraints and insights for understanding the pollution dynamics in nighttime boundary layers in urban regions. Full article
(This article belongs to the Special Issue Atmospheric Measurements Using Unmanned Systems)
Show Figures

Figure 1

Back to TopTop