Application of Natural Products with Antioxidant, Anti-inflammatory and Antimicrobial Potentials

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Chemical and Molecular Sciences".

Deadline for manuscript submissions: closed (10 March 2022) | Viewed by 16826

Special Issue Editor


E-Mail Website
Guest Editor
School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
Interests: medicinal and pharmaceutical chemistry; natural product chemistry; pharmaceutical chemistry; stereochemistry; functional foods; marine natural products; herbal medicine

Special Issue Information

Dear Colleagues,

Natural Products with antioxidant, anti-inflammatory and antimicrobial activity have provided humans with the remedies or preventive measures for lethal diseases for a long time. Inflammation and oxidative stresses play crucial roles in pathogenesis of many chronic diseases, such as cancer, cardiovascular and metabolic diseases. Since ancient times, natural products with anti-inflammatory and antioxidant activity were recognized as remedies or preventive measures for these diseases. Microbial infections remain a significant cause of morbidity and mortality in some parts of the world, in spite of the progress made in microbiology and the control of microorganisms, especially the discovery of effective antimicrobial agents from natural sources.

In this Special Issue, we invite submissions exploring the applications of natural products with antioxidant, anti-inflammatory and antimicrobial activity for the development of pharmaceuticals, nutraceuticals, functional foods, feeds or other industrial products with high values. Research articles, reviews and survey papers on the discovery of individual compounds and extracts with the bioactivity from natural sources, and the mechanism studies of bioactive natural compounds or extracts are welcomed.

Prof. Dr. Dongyup Hahn
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antioxidant
  • anti-inflammatory
  • antimicrobial
  • bioactive natural products
  • pharmaceuticals
  • nutraceuticals

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 2484 KiB  
Article
Anti-Inflammatory Butenolides from a Marine-Derived Streptomyces sp. 13G036
by Ming Gao, Sang Bong Lee, Jae-Eon Lee, Geum Jin Kim, Jimin Moon, Joo-Won Nam, Jong-Sup Bae, Jungwook Chin, Yong Hyun Jeon and Hyukjae Choi
Appl. Sci. 2022, 12(9), 4510; https://doi.org/10.3390/app12094510 - 29 Apr 2022
Cited by 6 | Viewed by 1614
Abstract
Butenolides are a family of lactones containing a double bond and have been frequently found in the extracts of Streptomyces bacterial species with various pharmacological activities. In this study, seven butenolides (17) were discovered and isolated from the culture [...] Read more.
Butenolides are a family of lactones containing a double bond and have been frequently found in the extracts of Streptomyces bacterial species with various pharmacological activities. In this study, seven butenolides (17) were discovered and isolated from the culture broth of a marine-derived Streptomyces sp. 13G036 based on a molecular networking analysis. Among the seven isolates, compound 7 was first isolated as a natural product in this study. The structures of compounds 17 were determined by combined analysis of 1D/2D Nuclear Magnetic Resonance (NMR) spectra, Mass Spectrometry (MS) spectra and electronic circular dichroism (ECD) data. Compounds 16 showed potential anti-inflammatory activities by inhibiting the production of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukine-6 (IL-6) in lipopolysaccharide-stimulated macrophages. Full article
Show Figures

Figure 1

17 pages, 2675 KiB  
Article
Anti-Hyperuricemic Effect of Ethyl Acetate Sub-Fractions from Chrysanthemum morifolium Ramat. Dried Flowers on Potassium Oxonate-Induced Hyperuricemic Rats
by Teng Lit Ng, Khye Er Loh, Sheri-Ann Tan, Hui Yin Tan, Chen Son Yue, Sze Ping Wee and Zi Tong Tey
Appl. Sci. 2022, 12(7), 3487; https://doi.org/10.3390/app12073487 - 30 Mar 2022
Cited by 3 | Viewed by 1942
Abstract
Xanthine oxidase (XO) plays an important role in purine degradation in humans. The study aimed to determine the XO inhibitory potential of Chrysanthemum morifolium dried flower ethyl acetate sub-fractions and its anti-hyperuricemic effect in rat models. Bioassay-guided fractionation based on XO inhibitory assay [...] Read more.
Xanthine oxidase (XO) plays an important role in purine degradation in humans. The study aimed to determine the XO inhibitory potential of Chrysanthemum morifolium dried flower ethyl acetate sub-fractions and its anti-hyperuricemic effect in rat models. Bioassay-guided fractionation based on XO inhibitory assay was employed to obtain bioactive fractions and sub-fractions. In vitro cytotoxicity and cellular antioxidant capacity of the sub-fraction and its mode of XO inhibition were also investigated. The anti-hyperuricemic effect of the bioactive sub-fraction was investigated using rat models via oral consumption, and followed by an XO mRNA gene expression study. The compounds in the bioactive sub-fractions were identified putatively using HPLC-Q-TOF-MS/MS. Ethyl acetate (EtOAc) fraction exhibited the highest XO inhibition among the fractions. It was further fractionated into 15 sub-fractions. F10 exhibited high XO inhibitory activity, cellular pro-proliferative effect, and intracellular antioxidant activity among the sub-fractions tested. This sub-fraction was non-cytotoxic at 0.1–10 µg/mL, and very effective in lowering serum and urine uric acid level in rat models upon oral consumption. A total of 26 known compounds were identified and seven unknown compounds were detected via HPLC-Q-TOF–MS/MS analysis. The possible mechanisms contributing to the anti-hyperuricemic effect were suggested to be the non-competitive inhibition of XO enzyme, XO gene expression down-regulation, and the enhancement of uric acid excretion. Full article
Show Figures

Graphical abstract

15 pages, 1541 KiB  
Article
Garlic Extract: Inhibition of Biochemical and Biophysical Changes in Glycated HSA
by Mohd W. A. Khan, Ahmed A. Otaibi, Arwa F. M. Alhumaid, Abdulmohsen K. D. Alsukaibi, Asma K. Alshamari, Eida M. Alshammari, Salma A. Al-Zahrani, Ahmed Y. M. Almudyani and Subuhi Sherwani
Appl. Sci. 2021, 11(22), 11028; https://doi.org/10.3390/app112211028 - 21 Nov 2021
Cited by 4 | Viewed by 1932
Abstract
Glycation of various biomolecules contributes to structural changes and formation of several high molecular weight fluorescent and non-fluorescent, advanced glycation end products (AGEs). AGEs and glycation are involved in various health complications. Synthetic medicines, including metformin, have several adverse effects. Natural products and [...] Read more.
Glycation of various biomolecules contributes to structural changes and formation of several high molecular weight fluorescent and non-fluorescent, advanced glycation end products (AGEs). AGEs and glycation are involved in various health complications. Synthetic medicines, including metformin, have several adverse effects. Natural products and their derivatives are used in the treatment of various diseases due to their significant therapeutic qualities. Allium sativum (garlic) is used in traditional medicines because of its antioxidant, anti-inflammatory, and anti-diabetic properties. This study aimed to determine the anti-glycating and AGEs inhibitory activities of garlic. Biochemical and biophysical analyses were performed for in vitro incubated human serum albumin (HSA) with 0.05 M of glucose for 1, 5, and 10 weeks. Anti-glycating and AGEs inhibitory effect of garlic was investigated in glycated samples. Increased biochemical and biophysical changes were observed in glycated HSA incubated for 10 weeks (G-HSA-10W) as compared to native HSA (N-HSA) as well as glycated HSA incubated for 1 (G-HSA-1W) and 5 weeks (G-HSA-5W). Garlic extract with a concentration of ≥6.25 µg/mL exhibited significant inhibition in biophysical and biochemical changes of G-HSA-10W. Our findings demonstrated that garlic extract has the ability to inhibit biochemical and biophysical changes in HSA that occurred due to glycation. Thus, garlic extract can be used against glycation and AGE-related health complications linked with chronic diseases in diabetic patients due to its broad therapeutic potential. Full article
Show Figures

Figure 1

15 pages, 974 KiB  
Article
Chemical Profiling, Antioxidant, and Antimicrobial Activity against Drug-Resistant Microbes of Essential Oil from Withania frutescens L.
by Abdelfattah EL Moussaoui, Mohammed Bourhia, Fatima Zahra Jawhari, Ahmad Mohammad Salamatullah, Riaz Ullah, Ahmed Bari, Hafiz Majid Mahmood, Muhammad Sohaib, Bohza Serhii, Alexander Rozhenko, Mourad A. M. Aboul-Soud, Essam Ezzeldin, Gamal A. E. Mostafa, Dalila Bousta and Amina Bari
Appl. Sci. 2021, 11(11), 5168; https://doi.org/10.3390/app11115168 - 02 Jun 2021
Cited by 32 | Viewed by 3675
Abstract
This work was conducted to study the chemical composition, antioxidant, antibacterial, and antifungal activities of essential oil and hydrolat from Withania frutescens. The essential oil was extracted by hydrodistillation. The chemical characterization was performed using gas chromatography-mass spectrometry (GC/MS). The antioxidant activity [...] Read more.
This work was conducted to study the chemical composition, antioxidant, antibacterial, and antifungal activities of essential oil and hydrolat from Withania frutescens. The essential oil was extracted by hydrodistillation. The chemical characterization was performed using gas chromatography-mass spectrometry (GC/MS). The antioxidant activity was studied using four different assays (DPPH, TAC, FRAP, and β-carotene bleaching). The antibacterial activity test was carried out on multidrug-resistant bacteria including Gram-negative and Gram-positive strains. Antifungal activity was tested on Candida albicans and Saccharomyces cerevisiae. The yield of essential oil (EO) obtained by hydrodistillation of W. frutescens was 0.31% majorly composed of camphor, α-thujone, carvacrol, and thymol. Regarding the antioxidant activities, the concentration of the sample required to inhibit 50% of radicals (IC50) of EO and hydrolat were 14.031 ± 0.012 and 232.081 ± 3.047 µg/mL (DPPH), 4.618 ± 0.045 and 8.997 ± 0.147 µg/mL (FRAP), 0.091 ± 0.007 and 0.131 ± 0.004 mg AAE/mg (TAC), 74.141 ± 1.040% and 40.850 ± 0.083% (β-carotene), respectively. Concerning the antibacterial activity of essential oil and hydrolat, the minimum inhibitory concentration (MIC) values found were 0.006 ± 0.001 and 6.125 ± 0.541 µg/mL (Escherichia coli 57), 0.003 ± 0.001 and 6.125 ± 0.068 µg/mL (Klebsiella pneumoniae), 0.001 ± 0.0 and 6.125 ± 0.046 µg/mL (Pseudomonas aeruginosa) and 0.012 ± 0.003 and 6.125 ± 0.571 µg/mL (Staphylococcus aureus), respectively. MIC values of essential oil and hydrolat vs. both C. albicans and S. cerevisiae were lower than 1/20,480 µg/mL. Based on the findings obtained, essential oils of Withania frutescens can be used as promising natural agents to fight free radical damage and nosocomial antibiotic-resistant microbes. Full article
Show Figures

Figure 1

13 pages, 2116 KiB  
Article
Anti-Inflammatory and Antioxidant Effects of Soroseris hirsuta Extract by Regulating iNOS/NF-κB and NRF2/HO-1 Pathways in Murine Macrophage RAW 264.7 Cells
by Woo Jin Lee, Wan Yi Li, Sang Woo Lee and Sung Keun Jung
Appl. Sci. 2021, 11(10), 4711; https://doi.org/10.3390/app11104711 - 20 May 2021
Cited by 5 | Viewed by 2804
Abstract
Until now, the physiological effects of Soroseris hirsuta were primarily unknown. Here we have evaluated the anti-inflammatory and antioxidant effects of Soroseris hirsuta extract (SHE) on lipopolysaccharide (LPS)-activated murine macrophages RAW 264.7 cells. SHE inhibited nitric oxide expression and inducible nitric [...] Read more.
Until now, the physiological effects of Soroseris hirsuta were primarily unknown. Here we have evaluated the anti-inflammatory and antioxidant effects of Soroseris hirsuta extract (SHE) on lipopolysaccharide (LPS)-activated murine macrophages RAW 264.7 cells. SHE inhibited nitric oxide expression and inducible nitric oxide synthase expression in RAW 264.7 cells treated with LPS. Moreover, SHE suppressed LPS-induced phosphorylation of IκB kinase, inhibitor of kappa B, p65, p38, and c-JUN N-terminal kinase. Western blot and immunofluorescence analyses showed that SHE suppressed p65 nuclear translocation induced by LPS. Furthermore, SHE inhibited the reactive oxygen species in LPS-treated RAW 264.7 cells. SHE significantly increased heme oxygenase-1 expression and the nuclear translocation of nuclear factor erythroid 2-related factor 2. SHE suppressed LPS-induced interleukin-1β mRNA expression in RAW 264.7 cells. Thus, SHE is a promising nutraceutical as it displays anti-inflammatory and antioxidant properties. Full article
Show Figures

Figure 1

13 pages, 2604 KiB  
Article
Fermented Rice Germ Extract Ameliorates Abnormal Glucose Metabolism via Antioxidant Activity in Type 2 Diabetes Mellitus Mice
by Ye Ji Hyun, Ju Gyeong Kim, Sung Keun Jung and Ji Yeon Kim
Appl. Sci. 2021, 11(7), 3091; https://doi.org/10.3390/app11073091 - 31 Mar 2021
Cited by 6 | Viewed by 3972
Abstract
Rice germ is an abundant source of ferulic acid, which is known for its anti-oxidant activity. This study aimed to evaluate the regulatory effects of fermented rice germ extracts on hepatic glucose metabolism in C57BL/KsJ-db/db mice. Rice germ was fermented with Lactobacillus plantarum [...] Read more.
Rice germ is an abundant source of ferulic acid, which is known for its anti-oxidant activity. This study aimed to evaluate the regulatory effects of fermented rice germ extracts on hepatic glucose metabolism in C57BL/KsJ-db/db mice. Rice germ was fermented with Lactobacillus plantarum and extracted with 30% ethanol (RG_30E) or 50% ethanol (RG_50E). Mice were fed modified AIN-93 diets containing fermented rice germ extracts and ferulic acid for 8 weeks. RG_50E significantly reduced food intake as well as liver weight and RG_30E and RG_50E improved glucose homeostasis, as indicated by fasting blood glucose levels and glucose tolerance. Hepatic triglyceride and total cholesterol levels were significantly decreased in db/db mice fed RG_30E and RG_50E. The antioxidant capacity of RG_30E and RG_50E was confirmed by a decrease in malondialdehyde levels and an increase in hepatic superoxide dismutase activity. The expression of genes related to glycolysis and gluconeogenesis was significantly regulated by RG_30E and RG_50E. These results suggest that fermented rice germ extracts have the potential to regulate hypoglycemia and hepatic glucose metabolism in type 2 diabetes db/db mice. Full article
Show Figures

Figure 1

Back to TopTop