Special Issue "Dynamic Models of Biology and Medicine, Volume II"

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Applied Biosciences and Bioengineering".

Deadline for manuscript submissions: 31 March 2020.

Special Issue Editors

Prof. Dr. Yang Kuang
E-Mail Website
Guest Editor
School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA
Interests: mathematical and computational biology and medicine; delay differential equations; mathematical models; applied mathematics
Special Issues and Collections in MDPI journals
Dr. Kevin Flores
E-Mail Website
Guest Editor
North Carolina State University, Raleigh, USA
Interests: applied mathematics, inverse problems, mathematical biology, precision medicine, machine learning
Dr. Erica Rutter
E-Mail Website
Guest Editor
North Carolina State University/ University of California – Merced, Raleigh, USA
Interests: mathematical biology, mathematical oncology, machine learning

Special Issue Information

Dear Colleagues,

Mathematical and computational modeling approaches in biological and medical research are experiencing exponential growth globally. This Special Issue intends to catch a glimpse of this exciting phenomenon. Areas covered include general mathematical methods and their applications in biology and medicine, with an emphasis on work related to mathematical and computational modeling and to nonlinear and stochastic dynamics.

Topics appropriate for this Special Issue include, but are not limited to, all areas of mathematical biology and medicine that employ dynamic (differential equation) models to describe observed nonlinear dynamics that aim to understand life science problems. To be considered for this Special Issue, a paper should be in one (or a combination) of the following three categories. (a) papers developing and mathematically analyzing dynamic models that have concrete applications in biology or medicine; (b) papers devoted to mathematical theory and methods, with a clear life science motivation, whose results may lead to an improved understanding of the underlying problem; and (c) papers using numerical simulations, experiments, or both to reveal or explain some new life science phenomena, where mathematical analysis plays a useful role in the process.

All papers must contain a comprehensive introductory section and an in-depth discussion section that is closely tied to applications. The scientific importance and motivation of the paper and its conclusions should be made clear at the outset.

Prof. Dr. Yang Kuang
Dr. Kevin Flores
Dr. Erica Rutter
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Dynamic system
  • mathematical biology
  • mathematical medicine
  • simulation
  • stability
  • bifurcation

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Estimating Time-Varying Applied Current in the Hodgkin-Huxley Model
Appl. Sci. 2020, 10(2), 550; https://doi.org/10.3390/app10020550 - 11 Jan 2020
Abstract
The classic Hodgkin-Huxley model is widely used for understanding the electrophysiological dynamics of a single neuron. While applying a low-amplitude constant current to the system results in a single voltage spike, it is possible to produce multiple voltage spikes by applying time-varying currents, [...] Read more.
The classic Hodgkin-Huxley model is widely used for understanding the electrophysiological dynamics of a single neuron. While applying a low-amplitude constant current to the system results in a single voltage spike, it is possible to produce multiple voltage spikes by applying time-varying currents, which may not be experimentally measurable. The aim of this work is to estimate time-varying applied currents of different deterministic forms given noisy voltage data. In particular, we utilize an augmented ensemble Kalman filter with parameter tracking to estimate four different time-varying applied current parameters and associated Hodgkin-Huxley model states, along with uncertainty bounds in each case. We test the efficiency of the parameter tracking algorithm in this setting by analyzing the effects of changing the standard deviation of the parameter drift and the frequency of data available on the resulting time-varying applied current estimates and related uncertainty. Full article
(This article belongs to the Special Issue Dynamic Models of Biology and Medicine, Volume II)
Open AccessArticle
Emotion, Respiration, and Heart Rate Variability: A Mathematical Model and Simulation Analyses
Appl. Sci. 2019, 9(23), 5008; https://doi.org/10.3390/app9235008 - 20 Nov 2019
Abstract
Although the generation mechanism of the low-frequency (LF) component of heart rate variability (HRV) is controversial, HRV is a potential candidate in designing objective measurement methodologies for emotions. These methodologies could be valuable for several biosignal applications. Here, we have conducted a simulation [...] Read more.
Although the generation mechanism of the low-frequency (LF) component of heart rate variability (HRV) is controversial, HRV is a potential candidate in designing objective measurement methodologies for emotions. These methodologies could be valuable for several biosignal applications. Here, we have conducted a simulation analysis using a novel mathematical model that integrates emotion, respiration, the nervous system, and the cardiovascular system. Our model has well reproduced experimental results, specifically concerning HRV with respiratory sinus arrhythmia and LF, the relation between HRV total power and the respiration frequency, and the homeostatic maintenance by the baroreflex. Our model indicates the following possibilities: (i) The delay in the heart rate control process of the parasympathetic activity works as a low-pass filter and the HRV total power decreases with a higher respiration frequency; (ii) the LF component of HRV and the Mayer wave are generated as transient responses of the baroreflex feedback control to perturbations induced by an emotional stimulus; and (iii) concentration on breathing to reduce the respiration frequency can reduce LF/HF and the reduction can be fed back to the emotional status. Full article
(This article belongs to the Special Issue Dynamic Models of Biology and Medicine, Volume II)
Show Figures

Figure 1

Open AccessArticle
Surface Topography-Based Positioning Accuracy of Maxillary Templates Fabricated by the CAD/CAM Technique for Orthognathic Surgery without an Intermediate Splint
Appl. Sci. 2019, 9(22), 4928; https://doi.org/10.3390/app9224928 - 16 Nov 2019
Abstract
Computer-aided design/computer-aided manufacturing (CAD/CAM)-based maxillary templates can transfer a surgical plan accurately only when the template is positioned correctly. Our study aimed to evaluate the positioning accuracy of the CAD/CAM-based template for maxillary orthognathic surgery using dry skulls. After reconstruction of a three-dimensional [...] Read more.
Computer-aided design/computer-aided manufacturing (CAD/CAM)-based maxillary templates can transfer a surgical plan accurately only when the template is positioned correctly. Our study aimed to evaluate the positioning accuracy of the CAD/CAM-based template for maxillary orthognathic surgery using dry skulls. After reconstruction of a three-dimensional (3D) virtual skull model, a surface-based surgical template for Le Fort I osteotomy was designed and fabricated using CAD/CAM and 3D printing technology. To determine accuracy, the deviation of the template between the planned and the actual position and the fitness of the template were evaluated. The mean deviation was 0.41 ± 0.30 mm in the medio-lateral direction, 0.55 ± 0.59 mm in the antero-posterior direction, and 0.69 ± 0.59 mm in the supero-inferior direction. The root mean square deviation between the planned and the actual position of the template was 1.21 ± 0.54 mm. With respect to the fitness of the template, the mean distance between the inner surface of the template and the underlying bone surface was 0.76 ± 0.24 mm. CAD/CAM-based templates showed precise positioning and good fitness. These results suggest that surface topography-based CAD-CAM templates can be considered as an alternative solution in replacing the traditional intermediate splints for the transfer of surgical plans. Full article
(This article belongs to the Special Issue Dynamic Models of Biology and Medicine, Volume II)
Show Figures

Figure 1

Open AccessArticle
In-Vitro Simulation of the Blood Flow in an Axisymmetric Abdominal Aortic Aneurysm
Appl. Sci. 2019, 9(21), 4560; https://doi.org/10.3390/app9214560 - 27 Oct 2019
Abstract
We investigated the blood flow patterns and the hemodynamics associated with an abdominal aortic aneurysm detected in an in vitro measurement campaign performed in a laboratory model of an aneurysm with rigid walls and an axisymmetric shape. Experiments were run in steady flow [...] Read more.
We investigated the blood flow patterns and the hemodynamics associated with an abdominal aortic aneurysm detected in an in vitro measurement campaign performed in a laboratory model of an aneurysm with rigid walls and an axisymmetric shape. Experiments were run in steady flow conditions and by varying the Reynolds number in the range 410 < Re < 2650. High spatial and temporal resolution 2D optical measurements of the velocity field were obtained through a particle tracking technique known as Hybrid Lagrangian Particle Tracking. Conversely to classical Particle Image Velocimetry, both the fluid particle trajectories and the instantaneous and time-averaged velocity fields are provided without constraints on the grid size and very close to the vessel boundary. All the most relevant quantities needed to investigate the flow features were evaluated, and in particular, we focused on the wall shear stress distribution both in the healthy aortic portion and within the aneurysm. Results show that the recirculation zone in correspondence of the cavity moves downstream, and this displacement is found to increase with Re. Very low wall shear stress values are recovered in correspondence of the aneurysmal cavity, while a sharp peak occurs in correspondence of the reattachment point. In agreement with the literature data, the peak value is found to decrease with Re and to be about equal to twice the upstream value. Full article
(This article belongs to the Special Issue Dynamic Models of Biology and Medicine, Volume II)
Show Figures

Figure 1

Back to TopTop