Topical Collection "Fracture, Fatigue, and Wear"

Editor

Prof. Dr. Magd Abdel Wahab
E-Mail Website
Collection Editor
Laboratory Soete, Faculty of Engineering and Architecture, Ghent University, Technologiepark Zwijnaarde 903, B-9052 Zwijnaarde, Belgium
Interests: computational mechanics; fracture mechanics; damage mechanics; finite element analysis; fatigue of materials; fretting fatigue; fretting wear; durability; dynamics and vibration of structures
Special Issues and Collections in MDPI journals

Topical Collection Information

Dear Colleagues,

We are expecting to solicit excellent contributions related to topics on "Fracture, Fatigue, and Wear", with a collection of peer-reviewed papers, which further develop researches within broader Topical Collection theme. We would like to invite you to contribute to this collection.

The overall objective of the Topical Collection "Fracture, Fatigue, and Wear" is to publish high quality research articles in fields related to Fracture Mechanics, Fatigue of Materials, Tribology and Wear of Materials. The Topical Collection covers industrial engineering applications of the above topics including theoretical and analytical methods, numerical simulations and experimental techniques.

Prof. Dr. Magd Abdel Wahab
Collection Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Mechanics is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (5 papers)

2021

Jump to: 2020

Article
Consideration of the Heating of High-Performance Concretes during Cyclic Tests in the Evaluation of Results
Appl. Mech. 2021, 2(4), 766-780; https://doi.org/10.3390/applmech2040044 - 02 Oct 2021
Viewed by 187
Abstract
Material-efficient, highly load-bearing members made of high-performance compressive concretes are often exposed to cyclical loads because of their slender construction, which can be relevant to the design. When investigating the fatigue behaviour of high-performance concretes in pressure swell tests, however, the specimen temperature [...] Read more.
Material-efficient, highly load-bearing members made of high-performance compressive concretes are often exposed to cyclical loads because of their slender construction, which can be relevant to the design. When investigating the fatigue behaviour of high-performance concretes in pressure swell tests, however, the specimen temperature rises strongly owing to the elevated loading rate at frequencies higher than 3 Hz. This leads to a negative influence on the achieved number of load cycles compared to tests carried out at slow speeds and calculated values, for example, according to fib Model Code 2010. This phenomenon, which was already observed, must be considered when generating design formulae or Wöhler lines for component design, as the test conditions with high constant load frequencies as well as sample storage in a climate chamber at constant conditions are prerequisites that cannot be expected in real material applications. Therefore, laboratory testing influences must be eliminated in order to avoid underestimating the material. Instead of adjusting the test conditions to prevent or control temperature development, as was the case in previous approaches, this article shows how the temperature effects can be corrected when analysing the results, considering both the applied stress and the maximum temperature reached. For this purpose, a calculation method was developed that was validated on the basis of a large number of fatigue tests. Thus, in the future, the application of one temperature sensor to the test specimen can effectively advance the extraction of values for Wöhler curves, even with high test frequencies. Full article
Article
CC(T) Specimen Load-Bearing Capacity Related to Yield Strength and Upper-Shelf Charpy-V Energy
Appl. Mech. 2021, 2(4), 666-680; https://doi.org/10.3390/applmech2040038 - 28 Sep 2021
Viewed by 346
Abstract
The load-bearing capacity of a CC(T) specimen (Center-Cracked Tension) in the ductile fracture regime is usually controlled by plastic collapse. If the material’s tearing resistance is sufficiently low, the load-bearing capacity can drop below the plastic collapse value. Here, a recently developed simple [...] Read more.
The load-bearing capacity of a CC(T) specimen (Center-Cracked Tension) in the ductile fracture regime is usually controlled by plastic collapse. If the material’s tearing resistance is sufficiently low, the load-bearing capacity can drop below the plastic collapse value. Here, a recently developed simple fracture mechanics-based Charpy-V impact energy criterion for plastic collapse was used to provide a best estimate assessment of the CC(T) specimen load-bearing capacity. Full article
Show Figures

Figure 1

Article
Study of Influence of Width to Thickness Ratio in Sheet Metals on Bendability under Ambient and Superimposed Hydrostatic Pressure
Appl. Mech. 2021, 2(3), 542-558; https://doi.org/10.3390/applmech2030030 - 30 Jul 2021
Viewed by 404
Abstract
The effect of the width to thickness ratio on the bendability of sheet metal is investigated using the finite element method (FEM) employing the Gurson–Tvergaard–Needleman (GTN) model. Strain path changes in the sheet with change in the width/thickness ratio. It is shown that [...] Read more.
The effect of the width to thickness ratio on the bendability of sheet metal is investigated using the finite element method (FEM) employing the Gurson–Tvergaard–Needleman (GTN) model. Strain path changes in the sheet with change in the width/thickness ratio. It is shown that bendability and fracture strain increase significantly by decrease in the width/thickness ratio. The stress state is almost uniaxial when the stress ratio (α) is close to zero for narrow sheets. Stress ratio is nothing but the major stress to minor stress ratio. This delays the growth and coalescence of micro-voids as the volumetric strain and stress triaxiality (pressure/effective stress) decrease. On the other hand, ductility decreases with increase in α for wider sheets. Fracture bending strain is calculated and, as expected, it increases with decrease in the width/thickness ratio. Furthermore, a brief study is performed to understand the effect of superimposed hydrostatic pressure on fracture strain for various sheet metals with different width/thickness ratios. It is found that the superimposed hydrostatic pressure increases the ductility, and that the effect of the width/thickness ratio in metals on ductility is as significant as the effect of superimposed hydrostatic pressure. Numerical results are found to be in good agreement with experimental observations. Full article
Show Figures

Figure 1

Article
Buckling Strength Assessment of Composite Patch Repair Used for the Rehabilitation of Corroded Marine Plates
Appl. Mech. 2021, 2(3), 482-500; https://doi.org/10.3390/applmech2030027 - 20 Jul 2021
Viewed by 694
Abstract
A common form of damage encountered in marine structures is the accumulation of corrosion in susceptible areas, which leads to material wastage. As a result, the structural strength of the members affected is compromised, endangering their safe operation in design loads. Consequently, structural [...] Read more.
A common form of damage encountered in marine structures is the accumulation of corrosion in susceptible areas, which leads to material wastage. As a result, the structural strength of the members affected is compromised, endangering their safe operation in design loads. Consequently, structural instabilities may occur, such as buckling due to compressive or/and shear loads. An alternative repair practice for preventing such phenomena, approved for secondary load-carrying members, is the application of composite patches to the damaged area. In this preliminary study, this technique is examined in the scope of developing a framework that can be used to find the optimal solution for restoring the buckling strength of a corroded plate. The methods used to achieve this are based on finite element analysis (FEA) and design of experiments (DoE) to statistically analyze the aforementioned numerical calculations. By introducing the composite patch’s percentage coverage of its metal substrate and number of plies as design parameters, a response surface is generated with respect to the obtained factor of safety (regarding its reference uncorroded buckling strength). This list of data points is then evaluated, and an acceptable surface/list of design parameters’ combinations is generated. Full article
Show Figures

Figure 1

2020

Jump to: 2021

Article
Damage Evaluation of Free-Free Beam Based on Vibration Testing
Appl. Mech. 2020, 1(2), 142-152; https://doi.org/10.3390/applmech1020010 - 09 May 2020
Cited by 3 | Viewed by 2575
Abstract
Damage can be detected by vibration responses of a structure. Damage changes the modal properties such as natural frequencies, mode shapes, and damping ratios. Natural frequency is one of the most frequently used damage indicators. In this paper, the natural frequency is used [...] Read more.
Damage can be detected by vibration responses of a structure. Damage changes the modal properties such as natural frequencies, mode shapes, and damping ratios. Natural frequency is one of the most frequently used damage indicators. In this paper, the natural frequency is used to monitor damage in a free-free beam. The modal properties of the intact free-free beam are identified based on a setup of 15 accelerometers. A finite element model is used to model the free-free beam. Three models are considered: beam (1D), shell (2D), and solid (3D). The numerical models are updated based on the first five bending natural frequencies. The free-free beam is damaged by a rectangle cut. The experiment is re-setup and the model properties of the damaged beam are re-identified. The cuttings are modeled in the numerical simulations. The first five numerical bending natural frequencies of the damaged beam are compared with the experimental ones. The results showed that the 1D beam element model has the highest errors, while the 2D and 3D models have approximately the same results. Therefore, the 2D representation can be used to model the damaged beam for fast computation. Full article
Show Figures

Figure 1

Back to TopTop