Bioactive Properties of Enzymatically Hydrolyzed Mulberry Leaf Proteins: Antioxidant and Anti-Inflammatory Effects
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Protease Activity and Enzymatic Hydrolysis of MLP
2.3. Degree of Hydrolysis
2.4. TCA-Soluble Peptide
2.5. Molecular Weight Distribution of Hydrolysate
2.6. Antioxidant Activity
2.6.1. Reducing Power
2.6.2. ABTS Radical Scavenging Activity
2.6.3. OH Free Radical Scavenging Ratio
2.6.4. DPPH Free Radical Scavenging Ratio
2.7. Cytotoxicity
2.8. Anti-Inflammatory Activity
2.8.1. Nitric Oxide (NO) Analysis
2.8.2. Gene Transcription Level
2.8.3. Cytokine Analysis
2.9. Statistical Analysis
3. Results
3.1. Hydrolysis of MLP and Production of Peptides
3.2. SDS-PAGE and Molecular Weight Distribution
3.3. In Vitro Antioxidant Ability of MLP Hydrolysates
3.4. Cell Cytotoxicity of NeuH
3.5. Effect of NeuH on LPS-Induced Inflammation in RAW 264.7 Cell
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cross, C.E.; Halliwell, B.; Borish, E.T.; Pryor, W.A.; Ames, B.N.; Saul, R.L.; Mccord, J.M.; Harman, D. Oxygen Radicals and human-disease. Ann. Intern. Med. 1987, 107, 526–545. [Google Scholar] [CrossRef]
- West, A.P.; Shadel, G.S.; Ghosh, S. Mitochondria in innate immune responses. Nat. Rev. Immunol. 2011, 11, 389–402. [Google Scholar] [CrossRef]
- Kaminski, M.M.; Roth, D.; Krammer, P.H.; Gulow, K. Mitochondria as oxidative signaling organelles in T-cell activation: Physiological role and pathological implications. Arch. Immunol. Ther. Exp. 2013, 61, 367–384. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Y.; Nunez, G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, A.; Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 2010, 327, 291–295. [Google Scholar] [CrossRef]
- Takeuchi, O.; Akira, S. Innate immunity to virus infection. Immunol. Rev. 2009, 227, 75–86. [Google Scholar] [CrossRef]
- West, A.P.; Koblansky, A.A.; Ghosh, S. Recognition and signaling by toll-like receptors. Annu. Rev. Cell Dev. Biol. 2006, 22, 409–437. [Google Scholar] [CrossRef]
- Nakahira, K.; Haspel, J.A.; Rathinam, V.A.; Lee, S.J.; Dolinay, T.; Lam, H.C.; Englert, J.A.; Rabinovitch, M.; Cernadas, M.; Kim, H.P.; et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 2011, 12, 222–230. [Google Scholar] [CrossRef]
- Dostert, C.; Petrilli, V.; Van Bruggen, R.; Steele, C.; Mossman, B.T.; Tschopp, J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008, 320, 674–677. [Google Scholar] [CrossRef]
- Yang, C.; Zhou, Y.; Liu, H.; Xu, P. The Role of Inflammation in Cognitive Impairment of Obstructive Sleep Apnea Syndrome. Brain Sci. 2022, 12, 1303. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Xu, X.; Tao, S.; Chen, T.; Zhou, L.; Huang, Y.; Yang, H.; Yuan, M.; Ding, C. Comprehensive evaluation of chemical composition and health-promoting effects with chemometrics analysis of plant derived edible oils. Food Chem. X 2022, 14, 100341. [Google Scholar] [CrossRef]
- Vergara-Mendoza, M.; Martinez, G.R.; Blanco-Tirado, C.; Combariza, M.Y. Mass Balance and Compositional Analysis of Biomass Outputs from Cacao Fruits. Molecules 2022, 27, 3717. [Google Scholar] [CrossRef] [PubMed]
- Dudonne, S.; Vitrac, X.; Coutiere, P.; Woillez, M.; Merillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food. Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Kahl, R.; Kappus, H. Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E. Z Lebensm Unters Forsch 1993, 196, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Hamad, G.M.; Samy, H.; Mehany, T.; Korma, S.A.; Eskander, M.; Tawfik, R.G.; El-Rokh, G.; Mansour, A.M.; Saleh, S.M.; El, S.A.; et al. Utilization of Algae Extracts as Natural Antibacterial and Antioxidants for Controlling Foodborne Bacteria in Meat Products. Foods 2023, 12, 3281. [Google Scholar] [CrossRef]
- Whysner, J.; Wang, C.X.; Zang, E.; Iatropoulos, M.J.; Williams, G.M. Dose response of promotion by butylated hydroxyanisole in chemically initiated tumours of the rat forestomach. Food. Chem. Toxicol. 1994, 32, 215–222. [Google Scholar] [CrossRef]
- Gao, J.; Ning, C.; Wang, M.; Wei, M.; Ren, Y.; Li, W. Structural, antioxidant activity, and stability studies of jellyfish collagen peptide-calcium chelates. Food Chem. X 2024, 23, 101706. [Google Scholar] [CrossRef]
- Lingiardi, N.; Morais, N.S.; Rodrigues, V.M.; Moreira, S.; Galante, M.; Spelzini, D.; de Assis, C.F.; de Sousa, J.F. Quinoa protein-based Buriti oil nanoparticles: Enhancement of antioxidant activity and inhibition of digestive enzymes. Food Res. Int. 2025, 214, 116693. [Google Scholar] [CrossRef]
- Guo, Z.; Lai, J.; Wu, Y.; Fang, S.; Liang, X. Investigation on Antioxidant Activity and Different Metabolites of Mulberry (Morus spp.) Leaves Depending on the Harvest Months by UPLC-Q-TOF-MS with Multivariate Tools. Molecules 2023, 28, 1947. [Google Scholar] [CrossRef]
- Shan, Y.; Sun, C.; Li, J.; Shao, X.; Wu, J.; Zhang, M.; Yao, H.; Wu, X. Characterization of Purified Mulberry Leaf Glycoprotein and Its Immunoregulatory Effect on Cyclophosphamide-Treated Mice. Foods 2022, 11, 2034. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Zhang, X.; Ling, G.; Xiao, X.; Huang, D.; Chen, M. A Meta-Analysis of Randomized Clinical Trials of Runzao Zhiyang Capsule in Chronic Urticaria. Evid.-Based Complement Altern. Med. 2022, 2022, 1904598. [Google Scholar] [CrossRef]
- Cao, J.; Lai, L.; Liang, K.; Wang, Y.; Wang, J.; Yu, P.; Cao, F.; Su, E. Exploring Sustainable Protein Alternatives: Physicochemical and Functional Properties of Paper Mulberry (Broussonetia papyrifera (Linn.) L’Her. ex Vent.) Proteins. Food Biophys. 2025, 20, 78. [Google Scholar] [CrossRef]
- Chen, R.; Zhou, X.; Deng, Q.; Yang, M.; Li, S.; Zhang, Q.; Sun, Y.; Chen, H. Extraction, structural characterization and biological activities of polysaccharides from mulberry leaves: A review. Int. J. Biol. Macromol. 2024, 257, 128669. [Google Scholar] [CrossRef]
- Sun, C.; Shan, Y.; Tang, X.; Han, D.; Wu, X.; Wu, H.; Hosseininezhad, M. Effects of enzymatic hydrolysis on physicochemical property and antioxidant activity of mulberry (Morus atropurpurea Roxb.) leaf protein. Food Sci. Nutr. 2021, 9, 5379–5390. [Google Scholar] [CrossRef]
- Sun, C.; Tang, X.; Shao, X.; Han, D.; Zhang, H.; Shan, Y.; Gooneratne, R.; Shi, L.; Wu, X.; Hosseininezhad, M. Mulberry (Morus atropurpurea Roxb.) leaf protein hydrolysates ameliorate dextran sodium sulfate-induced colitis via integrated modulation of gut microbiota and immunity. J. Funct. Foods 2021, 84, 104575. [Google Scholar] [CrossRef]
- Kojima, Y.; Kimura, T.; Nakagawa, K.; Asai, A.; Hasumi, K.; Oikawa, S.; Miyazawa, T. Effects of Mulberry Leaf Extract Rich in 1-Deoxynojirimycin on Blood Lipid Profiles in Humans. J. Clin. Biochem. Nutr. 2010, 47, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.V.; Ho, D.V.; Le, N.T.; Van Phan, K.; Heinamaki, J.; Raal, A.; Nguyen, H.T. Flavonoids and alkaloids from the rhizomes of Zephyranthes ajax Hort. and their cytotoxicity. Sci. Rep. 2020, 10, 22193. [Google Scholar] [CrossRef]
- Megrous, S.; Zhao, X.; Al-Dalali, S.; Yang, Z. Response surface methodology and optimization of hydrolysis conditions for the in vitro calcium-chelating and hypoglycemic activities of casein protein hydrolysates prepared using microbial proteases. J. Food Meas. Charact. 2024, 18, 2549–2560. [Google Scholar] [CrossRef]
- Jia, F.; Zhang, Y.; Wang, J.; Peng, J.; Zhao, P.; Zhang, L.; Yao, H.; Ni, J.; Wang, K. The effect of halogenation on the antimicrobial activity, antibiofilm activity, cytotoxicity and proteolytic stability of the antimicrobial peptide Jelleine-I. Peptides 2019, 112, 56–66. [Google Scholar] [CrossRef]
- Coscueta, E.R.; Campos, D.A.; Osorio, H.; Nerli, B.B.; Pintado, M. Enzymatic soy protein hydrolysis: A tool for biofunctional food ingredient production. Food Chem. X 2019, 1, 100006. [Google Scholar] [CrossRef] [PubMed]
- Habinshuti, I.; Nsengumuremyi, D.; Muhoza, B.; Ebenezer, F.; Yinka, A.A.; Antoine, N.M. Recent and novel processing technologies coupled with enzymatic hydrolysis to enhance the production of antioxidant peptides from food proteins: A review. Food Chem. 2023, 423, 136313. [Google Scholar] [CrossRef]
- Zamora-Sillero, J.; Gharsallaoui, A.; Prentice, C. Peptides from Fish By-product Protein Hydrolysates and Its Functional Properties: An Overview. Mar. Biotechnol. 2018, 20, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Durak, A.; Baraniak, B.; Jakubczyk, A.; Swieca, M. Biologically active peptides obtained by enzymatic hydrolysis of Adzuki bean seeds. Food Chem. 2013, 141, 2177–2183. [Google Scholar] [CrossRef] [PubMed]
- Bermejo-Cruz, M.; Osorio-Ruiz, A.; Rodríguez-Canto, W.; Betancur-Ancona, D.; Martínez-Ayala, A.; Chel-Guerrero, L. Antioxidant potential of protein hydrolysates from canola (Brassica napus L.) seeds. Biocatal. Agric. Biotechnol. 2023, 50, 102687. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, M.; Shi, J.; Wang, J.; Jiang, Y.; Cui, C.; Kakuda, Y.; Xue, S.J. Optimization of antioxidant peptide production from grass carp sarcoplasmic protein using response surface methodology. Lwt-Food Sci. Technol. 2008, 41, 1624–1632. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, Z.; Ai, Z.; Zhang, Y.; Tan, C.P.; Liu, Y. Exploring the Antioxidant and Structural Properties of Black Bean Protein Hydrolysate and Its Peptide Fractions. Front. Nutr. 2022, 9, 884537. [Google Scholar] [CrossRef]
- GB/T 23527-2009; Proteinase Preparations. The National Standardization Administration Commission: Beijing, China, 2009.
- Monteiro, P.V.; Virupaksha, T.K.; Rao, D.R. Proteins of Italian millet: Amino acid composition, solubility fractionation and electrophoresis of protein fractions. J. Sci. Food. Agric. 1982, 33, 1072–1079. [Google Scholar] [CrossRef]
- Nielsen, P.M.; Petersen, D.; Dambmann, C. Improved method for determining food protein degree of hydrolysis. J. Food Sci. 2001, 66, 642–646. [Google Scholar] [CrossRef]
- Chongzhen, S. Enzymatic Preparation, Structural Identification and the Immunological Activity of Antioxidant Peptides Isolated from Mulberry Leaf Protein. Ph.D. Thesis, South China University of Technology, Guangzhou, China, 2017. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Szewczyk, A.; Marino, A.; Molinari, J.; Ekiert, H.; Miceli, N. Phytochemical Characterization, and Antioxidant and Antimicrobial Properties of Agitated Cultures of Three Rue Species: Ruta chalepensis, Ruta corsica, and Ruta graveolens. Antioxidants 2022, 11, 592. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, R.; Singha, P.K.; Dey, S. Water soluble bioactives of nacre mediate antioxidant activity and osteoblast differentiation. PLoS ONE 2013, 8, e84584. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Peng, B.; Wei, W.; Tian, X.; Wu, Z. Antioxidant and Anti-Diabetic Activities of Polysaccharides from Guava Leaves. Molecules 2019, 24, 1343. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, R.; Wang, J.; Tong, Y.; Zhang, J.; Li, Z.; Zhang, H.; Abbas, Z.; Si, D.; Wei, X. Isolation, Characterization, and Functional Properties of Antioxidant Peptides from Mulberry Leaf Enzymatic Hydrolysates. Antioxidants 2024, 13, 854. [Google Scholar] [CrossRef]
- Dhawan, U.; Lee, C.H.; Huang, C.C.; Chu, Y.H.; Huang, G.S.; Lin, Y.R.; Chen, W.L. Topological control of nitric oxide secretion by tantalum oxide nanodot arrays. J. Nanobiotechnol. 2015, 13, 79. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, Q.; Guo, Y.; Zhang, H.; Guo, X.; You, Q.; Wang, L. Methods for the Discovery and Identification of Small Molecules Targeting Oxidative Stress-Related Protein-Protein Interactions: An Update. Antioxidants 2022, 11, 619. [Google Scholar] [CrossRef]
- Zhuang, Y.; Wu, H.; Wang, X.; He, J.; He, S.; Yin, Y. Resveratrol Attenuates Oxidative Stress-Induced Intestinal Barrier Injury through PI3K/Akt-Mediated Nrf2 Signaling Pathway. Oxidative Med. Cell. Longev. 2019, 2019, 7591840. [Google Scholar] [CrossRef]
- Liu, M.; Wang, J.; He, Y. The U-Shaped Association between Bilirubin and Diabetic Retinopathy Risk: A Five-Year Cohort Based on 5323 Male Diabetic Patients. J. Diabetes Res. 2018, 2018, 4603087. [Google Scholar] [CrossRef]
- Nezu, M.; Suzuki, N. Roles of Nrf2 in Protecting the Kidney from Oxidative Damage. Int. J. Mol. Sci. 2020, 21, 2951. [Google Scholar] [CrossRef]
- Sato, Y.; Yanagita, M. Renal anemia: From incurable to curable. Am. J. Physiol.-Renal Physiol. 2013, 305, F1239–F1248. [Google Scholar] [CrossRef]
- Heistad, D.D. Oxidative stress and vascular disease—2005 Duff Lecture. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Liu, K.; Cao, S.; Sun, J.; Zhong, B.; Chun, J. Chemical Composition, Antimicrobial, Antioxidant, and Antiproliferative Properties of Grapefruit Essential Oil Prepared by Molecular Distillation. Molecules 2020, 25, 217. [Google Scholar] [CrossRef]
- Pan, X.; Zhao, Y.; Cheng, T.; Zheng, A.; Ge, A.; Zang, L.; Xu, K.; Tang, B. Monitoring NAD(P)H by an ultrasensitive fluorescent probe to reveal reductive stress induced by natural antioxidants in HepG2 cells under hypoxia. Chem. Sci. 2019, 10, 8179–8186. [Google Scholar] [CrossRef]
- Woo, M.; Kim, M.; Noh, J.S.; Park, C.H.; Song, Y.O. Preventative activity of kimchi on high cholesterol diet-induced hepatic damage through regulation of lipid metabolism in LDL receptor knockout mice. Food Sci. Biotechnol. 2018, 27, 211–218. [Google Scholar] [CrossRef]
- Kishimoto, Y.; Yoshida, H.; Kondo, K. Potential Anti-Atherosclerotic Properties of Astaxanthin. Mar. Drugs 2016, 14, 35. [Google Scholar] [CrossRef]
- Sun, C.; Tang, X.; Ren, Y.; Wang, E.; Shi, L.; Wu, X.; Wu, H. Novel Antioxidant Peptides Purified from Mulberry (Morus atropurpurea Roxb.) Leaf Protein Hydrolysates with Hemolysis Inhibition Ability and Cellular Antioxidant Activity. J. Agric. Food. Chem. 2019, 67, 7650–7659. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wu, W.; Ma, Y.; Min, T.; Lai, F.; Wu, H. Physicochemical, functional properties, and antioxidant activities of protein fractions obtained from mulberry (Morus atropurpurea roxb.) leaf. Int. J. Food Prop. 2018, 20, S3311–S3325. [Google Scholar] [CrossRef]
- Sun, C.; Wu, W.; Yin, Z.; Fan, L.; Ma, Y.; Lai, F.; Wu, H. Effects of simulated gastrointestinal digestion on the physicochemical properties, erythrocyte haemolysis inhibitory ability and chemical antioxidant activity of mulberry leaf protein and its hydrolysates. Int. J. Food Sci. Technol. 2018, 53, 282–295. [Google Scholar] [CrossRef]
- Fan, J.; Gao, A.; Zhan, C.; Jin, Y. Degradation of soybean meal proteins by wheat malt endopeptidase and the antioxidant capacity of the enzymolytic products. Front. Nutr. 2023, 10, 1138664. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Li, J.; Li, Y.; Chen, Y.; Jin, H. Preventive Effect of Collagen Peptides from Acaudina molpadioides on Acute Kidney Injury through Attenuation of Oxidative Stress and Inflammation. Oxidative Med. Cell. Longev. 2022, 2022, 8186838. [Google Scholar] [CrossRef]
- Bavaro, T.; Cattaneo, G.; Serra, I.; Benucci, I.; Pregnolato, M.; Terreni, M. Immobilization of Neutral Protease from Bacillus subtilis for Regioselective Hydrolysis of Acetylated Nucleosides: Application to Capecitabine Synthesis. Molecules 2016, 21, 1621. [Google Scholar] [CrossRef] [PubMed]
- Duijsens, D.; Palchen, K.; Verkempinck, S.; Guevara-Zambrano, J.; Hendrickx, M.; Van Loey, A.; Grauwet, T. Size exclusion chromatography to evaluate in vitro proteolysis: A case study on the impact of microstructure in pulse powders. Food Chem. 2023, 418, 135709. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, Y.; Yokoyama, W.; Liang, R.; Zhong, F. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation. Eur. Food Res. Technol. 2015, 240, 847–852. [Google Scholar] [CrossRef]
- Michalczyk, M.; Surowka, K. Changes in protein fractions of rainbow trout (Oncorhynchus mykiss) gravads during production and storage. Food Chem. 2007, 104, 1006–1013. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, M.; Sun, C.; Brennan, M.; Li, H.; Wang, G.; Lai, F.; Wu, H. Enzymatic preparation of immunomodulatory hydrolysates from defatted wheat germ (Triticum vulgare) globulin. Int. J. Food Sci. Technol. 2016, 51, 2556–2566. [Google Scholar] [CrossRef]
- Ao, X.L.; Yu, X.; Wu, D.T.; Li, C.; Zhang, T.; Liu, S.L.; Chen, S.J.; He, L.; Zhou, K.; Zou, L.K. Purification and characterization of neutral protease from Aspergillus oryzae Y1 isolated from naturally fermented broad beans. AMB Express 2018, 8, 96. [Google Scholar] [CrossRef]
- Wang, J.; Tang, Y.; Zhao, X.; Ding, Z.; Ahmat, M.; Si, D.; Zhang, R.; Wei, X. Molecular hybridization modification improves the stability and immunomodulatory activity of TP5 peptide. Front. Immunol. 2024, 15, 1472839. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, L.; Yang, Y.; Hou, Y.; Xu, Y.; Wang, Z.; Su, H.; Han, F.; Han, J.; Liu, P.; et al. LL-37 transports immunoreactive cGAMP to activate STING signaling and enhance interferon-mediated host antiviral immunity. Cell Rep. 2022, 39, 110880. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Zhang, J.; Tong, Y.; Abbas, Z.; Zhao, X.; Li, Z.; Zhang, H.; Chen, S.; Si, D.; et al. Peptide TaY Attenuates Inflammatory Responses by Interacting with Myeloid Differentiation 2 and Inhibiting NF-kappaB Signaling Pathway. Molecules 2024, 29, 4843. [Google Scholar] [CrossRef]
- Kim, G.N.; Jang, H.D. Flavonol content in the water extract of the mulberry (Morus alba L.) leaf and their antioxidant capacities. J. Food Sci. 2011, 76, C869–C873. [Google Scholar] [CrossRef]
- Pacheco, A.F.C.; Pacheco, F.C.; Cunha, J.S.; Nalon, G.A.; Gusmão, J.V.F.; Santos, F.R.D.; Andressa, I.; Paiva, P.H.C.; Tribst, A.A.L.; Leite Junior, B.R.D.C. Physicochemical Properties and In Vitro Antioxidant Activity Characterization of Protein Hydrolysates Obtained from Pumpkin Seeds Using Conventional and Ultrasound-Assisted Enzymatic Hydrolysis. Foods 2025, 14, 782. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, I.S.; Guimaraes, A.; Tribst, A.; Oliveira, E.B.; Leite, J.B. Ultrasound-assisted enzymatic hydrolysis of goat milk casein: Effects on hydrolysis kinetics and on the solubility and antioxidant activity of hydrolysates. Food Res. Int. 2022, 157, 111310. [Google Scholar] [CrossRef] [PubMed]
- Mirzaee, H.; Ahmadi, G.H.; Nikoo, M.; Udenigwe, C.C.; Khodaiyan, F. Relation of amino acid composition, hydrophobicity, and molecular weight with antidiabetic, antihypertensive, and antioxidant properties of mixtures of corn gluten and soy protein hydrolysates. Food Sci. Nutr. 2023, 11, 1257–1271. [Google Scholar] [CrossRef]
- Billi, M.; Pagano, S.; Pancrazi, G.L.; Valenti, C.; Bruscoli, S.; Di Michele, A.; Febo, M.; Grignani, F.; Marinucci, L. DNA damage and cell death in human oral squamous cell carcinoma cells: The potential biological effects of cannabidiol. Arch. Oral Biol. 2024, 169, 106110. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Prochazkova, M.; Kim, Y.S.; Jiang, C.; Ma, J.; Moses, L.; Martin, K.; Pham, V.; Zhang, N.; Highfill, S.L.; et al. Assessment and comparison of viability assays for cellular products. Cytotherapy 2024, 26, 201–209. [Google Scholar] [CrossRef]
- Tao, L.; Gu, F.; Liu, Y.; Yang, M.; Wu, X.Z.; Sheng, J.; Tian, Y. Preparation of antioxidant peptides from Moringa oleifera leaves and their protection against oxidative damage in HepG2 cells. Front. Nutr. 2022, 9, 1062671. [Google Scholar] [CrossRef]
- Zheng, L.; Yu, H.; Wei, H.; Xing, Q.; Zou, Y.; Zhou, Y.; Peng, J. Antioxidative peptides of hydrolysate prepared from fish skin gelatin using ginger protease activate antioxidant response element-mediated gene transcription in IPEC-J2 cells. J. Funct. Foods 2018, 51, 104–112. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, H.; Hsu, K.; Hwang, J. Anti-inflammatory peptides from enzymatic hydrolysates of tuna cooking juice. Food Agric. Immunol. 2015, 26, 770–781. [Google Scholar] [CrossRef]
- Fedchenko, V.; Morozevich, G.; Medvedev, A. The effect of renalase-derived peptides on viability of HepG2 and PC3 cells. Biomeditsinskaia Khimiia 2023, 63, 184–187. [Google Scholar] [CrossRef]
- Chen, Q.; Yu, M.; Tian, Z.; Cui, Y.; Deng, D.; Rong, T.; Liu, Z.; Song, M.; Li, Z.; Ma, X.; et al. Exogenous Glutathione Protects IPEC-J2 Cells against Oxidative Stress through a Mitochondrial Mechanism. Molecules 2022, 27, 2416. [Google Scholar] [CrossRef]
- Akturk, A. Enrichment of Cellulose Acetate Nanofibrous Scaffolds with Retinyl Palmitate and Clove Essential Oil for Wound Healing Applications. Acs Omega 2023, 8, 5553–5560. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Rajinikanth, P.S.; Arya, D.K.; Pandey, P.; Gupta, R.K.; Sankhwar, R.; Chidambaram, K. Multifunctional Biomimetic Nanofibrous Scaffold Loaded with Asiaticoside for Rapid Diabetic Wound Healing. Pharmaceutics 2022, 14, 273. [Google Scholar] [CrossRef]
- Butzbach, K.; Konhauser, M.; Fach, M.; Bamberger, D.N.; Breitenbach, B.; Epe, B.; Wich, P.R. Receptor-mediated Uptake of Folic Acid-functionalized Dextran Nanoparticles for Applications in Photodynamic Therapy. Polymers 2019, 11, 896. [Google Scholar] [CrossRef]
- Duan, Z.; Yuan, C.; Han, Y.; Zhou, L.; Zhao, J.; Ruan, Y.; Chen, J.; Ni, M.; Ji, X. TMT-based quantitative proteomics analysis reveals the attenuated replication mechanism of Newcastle disease virus caused by nuclear localization signal mutation in viral matrix protein. Virulence 2020, 11, 607–635. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yan, L.; Guo, Z.; Chen, Z.; Chen, Y.; Li, M.; Huang, C.; Zhang, X.; Chen, L. Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways. Cell Death Dis. 2016, 7, e2369. [Google Scholar] [CrossRef]
- Xu, W.; Wang, M.; Cui, G.; Li, L.; Jiao, D.; Yao, B.; Xu, K.; Chen, Y.; Long, M.; Yang, S.; et al. Astaxanthin Protects OTA-Induced Lung Injury in Mice through the Nrf2/NF-kappaB Pathway. Toxins 2019, 11, 540. [Google Scholar] [CrossRef] [PubMed]
- Paramo, T.; Tomasio, S.M.; Irvine, K.L.; Bryant, C.E.; Bond, P.J. Energetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response. Sci. Rep. 2015, 5, 17997. [Google Scholar] [CrossRef]
- Kaewin, S.; Changsorn, K.; Sungkaworn, T.; Hiranmartsuwan, P.; Yaosanit, W.; Rukachaisirikul, V.; Muanprasat, C. Fungus-Derived 3-Hydroxyterphenyllin and Candidusin A Ameliorate Palmitic Acid-Induced Human Podocyte Injury via Anti-Oxidative and Anti-Apoptotic Mechanisms. Molecules 2022, 27, 2109. [Google Scholar] [CrossRef]
- Chunhakant, S.; Chaicharoenpong, C. Antityrosinase, Antioxidant, and Cytotoxic Activities of Phytochemical Constituents from Manilkara zapota L. Bark. Molecules 2019, 24, 2798. [Google Scholar] [CrossRef]
- Dhall, S.; Hoffman, T.; Sathyamoorthy, M.; Lerch, A.; Jacob, V.; Moorman, M.; Kuang, J.Q.; Danilkovitch, A. A Viable Lyopreserved Amniotic Membrane Modulates Diabetic Wound Microenvironment and Accelerates Wound Closure. Adv. Wound Care 2019, 8, 355–367. [Google Scholar] [CrossRef]
- Rosenfeld, Y.; Shai, Y. Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: Role in bacterial resistance and prevention of sepsis. Biochim Biophys Acta 2006, 1758, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Spinaci, A.; Lambertucci, C.; Buccioni, M.; Dal Ben, D.; Graiff, C.; Barbalace, M.C.; Hrelia, S.; Angeloni, C.; Tayebati, S.K.; Ubaldi, M.; et al. A(2A) Adenosine Receptor Antagonists: Are Triazolotriazine and Purine Scaffolds Interchangeable? Molecules 2022, 27, 2386. [Google Scholar] [CrossRef]
- Kim, D.G.; Choi, J.W.; Jo, I.J.; Kim, M.J.; Lee, H.S.; Hong, S.H.; Song, H.J.; Bae, G.S.; Park, S.J. Berberine ameliorates lipopolysaccharide-induced inflammatory responses in mouse inner medullary collecting duct-3 cells by downregulation of NF-kappaB pathway. Mol. Med. Rep. 2020, 21, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.A.; Smith, M.J.; Sanders, M.K.; Ernst, P.B. Reactive oxygen and nitrogen species differentially regulate Toll-like receptor 4-mediated activation of NF-kappa B and interleukin-8 expression. Infect. Immun. 2004, 72, 2123–2130. [Google Scholar] [CrossRef] [PubMed]
- Gambuzza, M.; Licata, N.; Palella, E.; Celi, D.; Foti, C.V.; Italiano, D.; Marino, S.; Bramanti, P. Targeting Toll-like receptors: Emerging therapeutics for multiple sclerosis management. J. Neuroimmunol. 2011, 239, 1–12. [Google Scholar] [CrossRef]
- Diao, J.; Miao, X.; Chen, H. Anti-inflammatory effects of mung bean protein hydrolysate on the lipopolysaccharide- induced RAW264.7 macrophages. Food Sci. Biotechnol. 2022, 31, 849–856. [Google Scholar] [CrossRef]
- Song, T.; Zhou, M.; Li, W.; Lv, M.; Zheng, L.; Zhao, M. The anti-inflammatory effect of vasoactive peptides from soybean protein hydrolysates by mediating serum extracellular vesicles-derived miRNA-19b/CYLD/TRAF6 axis in the vascular microenvironment of SHRs. Food Res. Int. 2022, 160, 111742. [Google Scholar] [CrossRef]
Enzyme | Labeled Enzyme Activity (105 U/g) | Actual Enzyme Activity (105 U/g) | Optimum pH | Optimum Temperature (°C) | Enzyme Addition (U/g) |
---|---|---|---|---|---|
Alk | 20 | 14.85 | 10 | 45 | 6000 |
Try | 25 | 4.79 | 8 | 37 | 6000 |
Pa | 8 | 6.78 | 7 | 55 | 6000 |
Pro | 1 | 0.91 | 7 | 55 | 6000 |
Neu | 6 | 8.52 | 7 | 45 | 6000 |
Concentration of Gel | 15% | 5% |
---|---|---|
Volume | 10 mL | 5 mL |
30%Acr/Bis (29:1) | 5 mL | 830 μL |
1.5 M Tris-HCl (pH = 8.8) | 2.5 mL | 0 |
1.0 M Tris-HCl (pH = 6.8) | 0 | 625 μL |
10%SDS | 100 μL | 50 μL |
10%APs | 100 μL | 75 μL |
TEMED | 10 μL | 7.5 μL |
H2O | 2.3 mL | 3.42 mL |
Component | Volume |
---|---|
2 × ChamQ SYBR Color qPCR Master Mix (without ROX) | 10.0 μL |
Upstream primer (10 μM) | 0.4 μL |
Downstream primer (10 μM) | 0.4 μL |
cDNA template | 1.0 μL |
ddH2O | 8.2 μL |
Gene | Gene Accession Number | Sequence |
---|---|---|
GAPDH | AC166162 | F: 5′-TGAAGGTCGGAGTCAACGG-3′ |
R: 5′-TCCTGGAAGATGGTGATGGG-3′ | ||
COX-2 | DQ874614 | F: 5′-CTGCAAGTGCATCATCGTTGTTC-3′ |
R: 5′-CTGCAAGTGCATCATCGTTGTTC-3′ | ||
IL-6 | AC112933 | F: 5′-TACCACTTCACAAGTCGGAGGC-3′ |
R: 5′-CTGCAAGTGCATCATCGTTGTTC-3′ | ||
iNOS | AF427516 | F: 5′-GAGACAGGGAAGTCTGAAGCAC-3′ |
R: 5′-CCAGCAGTAGTTGCTCCTCTTC-3′ |
Sample | >10 kDa (%) | 5–10 kDa (%) | 3–5 kDa (%) | 1–3 kDa (%) | <1 kDa (%) |
---|---|---|---|---|---|
MLP | 56.24 | 7.83 | 3.92 | 4.68 | 27.43 |
AlkH | 29.21 | 8.58 | 7.05 | 16.76 | 29.70 |
TryH | 52.16 | 9.26 | 5.12 | 7.31 | 26.16 |
PaH | 42.07 | 9.37 | 5.04 | 6.49 | 37.03 |
ProH | 25.05 | 10.19 | 8.13 | 15.65 | 40.97 |
NeuH | 23.66 | 10.71 | 8.31 | 15.92 | 41.50 |
Items | YTP | DH | RP | DPPH | ABTS | OH |
---|---|---|---|---|---|---|
YTP | 1.000 | 0.931 ** | 0.917 ** | 0.873 ** | 0.868 ** | 0.959 ** |
DH | 0.931 ** | 1.000 | 0.949 ** | 0.853 ** | 0.908 ** | 0.978 ** |
RP | 0.917 ** | 0.949 ** | 1.000 | 0.000 | 0.920 ** | 0.983 ** |
DPPH | 0.873 ** | 0.853 ** | 0.000 | 1.000 | 0.141 | 0.064 |
ABTS | 0.868 ** | 0.908 ** | 0.920 ** | 0.141 | 1.000 | 0.964 ** |
OH | 0.959 ** | 0.978 ** | 0.983 ** | 0.064 | 0.964 ** | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Liu, T.; Zhang, R.; Wang, J.; Zhang, J.; Tong, Y.; Zhang, H.; Li, Z.; Si, D.; Wei, X. Bioactive Properties of Enzymatically Hydrolyzed Mulberry Leaf Proteins: Antioxidant and Anti-Inflammatory Effects. Antioxidants 2025, 14, 805. https://doi.org/10.3390/antiox14070805
Zhou Y, Liu T, Zhang R, Wang J, Zhang J, Tong Y, Zhang H, Li Z, Si D, Wei X. Bioactive Properties of Enzymatically Hydrolyzed Mulberry Leaf Proteins: Antioxidant and Anti-Inflammatory Effects. Antioxidants. 2025; 14(7):805. https://doi.org/10.3390/antiox14070805
Chicago/Turabian StyleZhou, Yichen, Tianxu Liu, Rijun Zhang, Junyong Wang, Jing Zhang, Yucui Tong, Haosen Zhang, Zhenzhen Li, Dayong Si, and Xubiao Wei. 2025. "Bioactive Properties of Enzymatically Hydrolyzed Mulberry Leaf Proteins: Antioxidant and Anti-Inflammatory Effects" Antioxidants 14, no. 7: 805. https://doi.org/10.3390/antiox14070805
APA StyleZhou, Y., Liu, T., Zhang, R., Wang, J., Zhang, J., Tong, Y., Zhang, H., Li, Z., Si, D., & Wei, X. (2025). Bioactive Properties of Enzymatically Hydrolyzed Mulberry Leaf Proteins: Antioxidant and Anti-Inflammatory Effects. Antioxidants, 14(7), 805. https://doi.org/10.3390/antiox14070805