Generative Deep Learning Design of Single-Domain Antibodies Against Venezuelan Equine Encephalitis Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Sequence-Generating Model
2.2. Binding Prediction and Final Selection
2.3. Protein Production
2.4. Enzyme-Linked Immunosorbent Assays
2.5. Plaque Reduction Neutralization Tests
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
VEEV | Venezuelan equine encephalitis virus |
ELISA | Enzyme-linked immunosorbent assays |
SdAbs | Single-domain antibodies |
CHIKV | Chikungunya virus |
References
- Steele, K.; Twenhafel, N. Pathology of animal models of alphavirus encephalitis. Vet. Pathol. 2010, 47, 790–805. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.C.; Ferro, C.; Barrera, R.; Boshell, J.; Navarro, J.-C. Venezuelan equine encephalitis. Annu. Rev. Entomol. 2004, 49, 141–174. [Google Scholar] [CrossRef]
- Liu, J.L.; Zabetakis, D.; Gardner, C.L.; Burke, C.W.; Glass, P.J.; Webb, E.M.; Shriver-Lake, L.C.; Anderson, G.P.; Weger-Lucarelli, J.; Goldman, E.R. Bivalent single domain antibody constructs for effective neutralization of Venezuelan equine encephalitis. Sci. Rep. 2022, 12, 700. [Google Scholar] [CrossRef] [PubMed]
- Paessler, S.; Weaver, S.C. Vaccines for Venezuelan equine encephalitis. Vaccine 2009, 27, D80–D85. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.S.; Diamond, M.S. A molecular understanding of alphavirus entry and antibody protection. Nat. Rev. Microbiol. 2023, 21, 396–407. [Google Scholar] [CrossRef]
- Burke, C.W.; Froude, J.W.; Rossi, F.; White, C.E.; Moyer, C.L.; Ennis, J.; Pitt, M.L.; Streatfield, S.; Jones, R.M.; Musiychuk, K. Therapeutic monoclonal antibody treatment protects nonhuman primates from severe Venezuelan equine encephalitis virus disease after aerosol exposure. PLoS Pathog. 2019, 15, e1008157. [Google Scholar] [CrossRef]
- Kafai, N.M.; Williamson, L.E.; Binshtein, E.; Sukupolvi-Petty, S.; Gardner, C.L.; Liu, J.; Mackin, S.; Kim, A.S.; Kose, N.; Carnahan, R.H. Neutralizing antibodies protect mice against Venezuelan equine encephalitis virus aerosol challenge. J. Exp. Med. 2022, 219, e20212532. [Google Scholar] [CrossRef]
- Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Molina-Abad, E.; Moreno, E. NbThermo: A new thermostability database for nanobodies. Database 2023, 2023, baad021. [Google Scholar] [CrossRef]
- Hoefman, S.; Ottevaere, I.; Baumeister, J.; Sargentini-Maier, M.L. Pre-clinical intravenous serum pharmacokinetics of albumin binding and non-half-life extended Nanobodies®. Antibodies 2015, 4, 141–156. [Google Scholar] [CrossRef]
- Liu, J.L.; Shriver-Lake, L.C.; Zabetakis, D.; Anderson, G.P.; Goldman, E.R. Selection and characterization of protective anti-chikungunya virus single domain antibodies. Mol. Immunol. 2019, 105, 190–197. [Google Scholar] [CrossRef]
- Hollifield, A.L.; Arnall, J.R.; Moore, D.C. Caplacizumab: An anti–von Willebrand factor antibody for the treatment of thrombotic thrombocytopenic purpura. Am. J. Health-Syst. Pharm. 2020, 77, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Høie, M.H.; Hummer, A.M.; Olsen, T.H.; Aguilar-Sanjuan, B.; Nielsen, M.; Deane, C.M. AntiFold: Improved structure-based antibody design using inverse folding. Bioinform. Adv. 2025, 5, vbae202. [Google Scholar] [CrossRef]
- Shanker, V.R.; Bruun, T.U.; Hie, B.L.; Kim, P.S. Unsupervised evolution of protein and antibody complexes with a structure-informed language model. Science 2024, 385, 46–53. [Google Scholar] [CrossRef]
- Notin, P.; Rollins, N.; Gal, Y.; Sander, C.; Marks, D. Machine learning for functional protein design. Nat. Biotechnol. 2024, 42, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Shuai, R.W.; Ruffolo, J.A.; Gray, J.J. IgLM: Infilling language modeling for antibody sequence design. Cell Syst. 2023, 14, 979–989.e4. [Google Scholar] [CrossRef]
- Xu, X.; Xu, T.; Zhou, J.; Liao, X.; Zhang, R.; Wang, Y.; Zhang, L.; Gao, X. AB-Gen: Antibody library design with generative pre-trained transformer and deep reinforcement learning. Genom. Proteom. Bioinform. 2023, 21, 1043–1053. [Google Scholar] [CrossRef]
- Ferruz, N.; Schmidt, S.; Höcker, B. ProtGPT2 is a deep unsupervised language model for protein design. Nat. Commun. 2022, 13, 4348. [Google Scholar] [CrossRef] [PubMed]
- Lhoest, Q.; Villanova del Moral, A.; Jernite, Y.; Thakur, A.; von Platen, P.; Patil, S.; Chaumond, J.; Drame, M.; Plu, J.; Tunstall, L.; et al. Datasets: A Community Library for Natural Language Processing. arXiv 2021, arXiv:2109.02846. [Google Scholar]
- Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Online, 16–20 November 2020; pp. 38–45. [Google Scholar]
- Liu, J.L.; Zabetakis, D.; Goldman, E.R.; Anderson, G.P. Single Domain Antibodies that Bind and Neutralize Venezuelan Equine Encephalitis Virus. U.S. Patent Application No. 17/853,050, 16 February 2023. [Google Scholar]
- Raybould, M.I.; Kovaltsuk, A.; Marks, C.; Deane, C.M. CoV-AbDab: The coronavirus antibody database. Bioinformatics 2021, 37, 734–735. [Google Scholar] [CrossRef]
- Kim, G.; Lee, S.; Levy Karin, E.; Kim, H.; Moriwaki, Y.; Ovchinnikov, S.; Steinegger, M.; Mirdita, M. Easy and accurate protein structure prediction using ColabFold. Nat. Protoc. 2025, 20, 620–642. [Google Scholar] [CrossRef]
- Vangone, A.; Bonvin, A.M. PRODIGY: A contact-based predictor of binding affinity in protein-protein complexes. Bio-Protoc. 2017, 7, e2124. [Google Scholar] [CrossRef]
- Lovell, S.C.; Davis, I.W.; Arendall III, W.B.; De Bakker, P.I.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins Struct. Funct. Bioinform. 2003, 50, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Osorio, D.; Rondón-Villarreal, P.; Torres, R. Peptides: A package for data mining of antimicrobial peptides. Small 2015, 12, 44–444. [Google Scholar] [CrossRef]
- Sievers, F.; Higgins, D.G. The clustal omega multiple alignment package. In Multiple Sequence Alignment: Methods and Protocols; Springer: New York, NY, USA, 2021; pp. 3–16. [Google Scholar]
- Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988, 16, 10881–10890. [Google Scholar] [CrossRef] [PubMed]
- Conway, J.R.; Lex, A.; Gehlenborg, N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 2017, 33, 2938–2940. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, F.; Lu, Y.; Hu, H.; Wang, J.; Guo, C.; Deng, Q.; Liao, C.; Wu, Q.; Hu, T. Highly potent multivalent VHH antibodies against Chikungunya isolated from an alpaca naïve phage display library. J. Nanobiotechnol. 2022, 20, 231. [Google Scholar] [CrossRef]
- Schneider, C.; Raybould, M.I.; Deane, C.M. SAbDab in the age of biotherapeutics: Updates including SAbDab-nano, the nanobody structure tracker. Nucleic Acids Res. 2022, 50, D1368–D1372. [Google Scholar] [CrossRef]
- Dean, S.N.; Legler, P.M.; Liu, J.L. Methods and Compositions of Thermostabilized Single Domain Antibodies. U.S. Patent Application No. 18/609606, 26 September 2024. [Google Scholar]
- Eshak, F.; Goupil-Lamy, A. Advancements in Nanobody Epitope Prediction: A Comparative Study of AlphaFold2Multimer vs AlphaFold3. J. Chem. Inf. Model. 2025, 65, 1782–1797. [Google Scholar] [CrossRef]
- Hitawala, F.N.; Gray, J.J. What has AlphaFold3 learned about antibody and nanobody docking, and what remains unsolved? bioRxiv 2024. [Google Scholar] [CrossRef]
- Wohlwend, J.; Corso, G.; Passaro, S.; Reveiz, M.; Leidal, K.; Swiderski, W.; Portnoi, T.; Chinn, I.; Silterra, J.; Jaakkola, T. Boltz-1: Democratizing Biomolecular Interaction Modeling. bioRxiv 2024. [Google Scholar] [CrossRef]
- Hayes, T.; Rao, R.; Akin, H.; Sofroniew, N.J.; Oktay, D.; Lin, Z.; Verkuil, R.; Tran, V.Q.; Deaton, J.; Wiggert, M. Simulating 500 million years of evolution with a language model. Science 2025, 387, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Goverde, C.A.; Pacesa, M.; Goldbach, N.; Dornfeld, L.J.; Balbi, P.E.; Georgeon, S.; Rosset, S.; Kapoor, S.; Choudhury, J.; Dauparas, J. Computational design of soluble and functional membrane protein analogues. Nature 2024, 631, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Iketani, S.; Ho, D.D. SARS-CoV-2 resistance to monoclonal antibodies and small-molecule drugs. Cell Chem. Biol. 2024, 31, 632–657. [Google Scholar] [CrossRef] [PubMed]
Name | Length | Molecular Weight (Da) | Isoelectric Point | Ramachandran Normal Count 1 | Ramachandran Outlier Count 1 | Number of Contacts with E2 2 | Dissociation Constant ((M) at 25.0 °C) 2 | Highest Percent Identity 3 |
---|---|---|---|---|---|---|---|---|
a155 | 118 | 12,591 | 9.9 | 536 | 1 | 142 | 5.40 × 10−12 | 83 |
a18 | 125 | 13,400 | 8.8 | 543 | 1 | 135 | 2.90 × 10−13 | 80 |
a19 | 117 | 12,674 | 6.9 | 536 | 0 | 119 | 9.70 × 10−13 | 78 |
a46 | 117 | 12,632 | 9.7 | 535 | 1 | 119 | 9.40 × 10−12 | 73 |
a29 | 120 | 13,175 | 6.5 | 538 | 1 | 118 | 1.40 × 10−12 | 77 |
a86 | 120 | 12,959 | 8.7 | 538 | 1 | 115 | 2.80 × 10−12 | 77 |
a16 | 120 | 13,106 | 9.0 | 539 | 0 | 115 | 5.10 × 10−12 | 80 |
a148 | 125 | 13,442 | 5.0 | 543 | 1 | 106 | 3.90 × 10−12 | 75 |
sdAb | TC-83 PRNT50 (µg/mL) | Standard Deviation (µg/mL) |
---|---|---|
a18 | 39 | 1.41 |
a16 | 53.25 | 9.55 |
a155 | 44 | 8.49 |
a19 | 62.5 | 3.54 |
V2B3 *1(+) | 0.95 | 0.42 |
V3G9 *2(−) | 351 | 96.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.L.; Bayacal, G.C.; Alvarez, J.A.E.; Shriver-Lake, L.C.; Goldman, E.R.; Dean, S.N. Generative Deep Learning Design of Single-Domain Antibodies Against Venezuelan Equine Encephalitis Virus. Antibodies 2025, 14, 41. https://doi.org/10.3390/antib14020041
Liu JL, Bayacal GC, Alvarez JAE, Shriver-Lake LC, Goldman ER, Dean SN. Generative Deep Learning Design of Single-Domain Antibodies Against Venezuelan Equine Encephalitis Virus. Antibodies. 2025; 14(2):41. https://doi.org/10.3390/antib14020041
Chicago/Turabian StyleLiu, Jinny L., Gabrielle C. Bayacal, Jerome Anthony E. Alvarez, Lisa C. Shriver-Lake, Ellen R. Goldman, and Scott N. Dean. 2025. "Generative Deep Learning Design of Single-Domain Antibodies Against Venezuelan Equine Encephalitis Virus" Antibodies 14, no. 2: 41. https://doi.org/10.3390/antib14020041
APA StyleLiu, J. L., Bayacal, G. C., Alvarez, J. A. E., Shriver-Lake, L. C., Goldman, E. R., & Dean, S. N. (2025). Generative Deep Learning Design of Single-Domain Antibodies Against Venezuelan Equine Encephalitis Virus. Antibodies, 14(2), 41. https://doi.org/10.3390/antib14020041