-
Predicting Molecular Biomarkers in WHO Grade 4 Glioma via APTw‑MRI
-
Applications of Advanced Imaging for Radiotherapy Planning and Response Assessment in the Central Nervous System
-
EBUS-Based Lung Cancer Diagnosis Using Multi-Scale and Multi-Feature Fusion
-
Assessing Acute DWI Lesions in Clinically Diagnosed TIA: Insights from a Cohort Study in Cluj, Romania
Journal Description
Tomography
Tomography
is an international, peer-reviewed open access journal on imaging technologies published monthly online by MDPI (from Volume 7 Issue 1-2021).
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, and other databases.
- Journal Rank: JCR - Q2 (Radiology, Nuclear Medicine and Medical Imaging)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 26.7 days after submission; acceptance to publication is undertaken in 2.7 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Impact Factor:
2.2 (2024);
5-Year Impact Factor:
2.2 (2024)
Latest Articles
Feasibility of Sodium and Amide Proton Transfer-Weighted Magnetic Resonance Imaging Methods in Mild Steatotic Liver Disease
Tomography 2025, 11(8), 89; https://doi.org/10.3390/tomography11080089 - 6 Aug 2025
Abstract
Background/Objectives: Fat and inflammation confound current magnetic resonance imaging (MRI) methods for assessing fibrosis in liver disease. Sodium or amide proton transfer-weighted MRI methods may be more specific for assessing liver fibrosis. The purpose of this study was to determine the feasibility
[...] Read more.
Background/Objectives: Fat and inflammation confound current magnetic resonance imaging (MRI) methods for assessing fibrosis in liver disease. Sodium or amide proton transfer-weighted MRI methods may be more specific for assessing liver fibrosis. The purpose of this study was to determine the feasibility of sodium and amide proton transfer-weighted MRI in individuals with liver disease and to determine if either method correlated with clinical markers of fibrosis. Methods: T1 and T2 relaxation maps, proton density fat fraction maps, liver shear stiffness maps, amide proton transfer-weighted (APTw) images, and sodium images were acquired at 3T. Image data were extracted from regions of interest placed in the liver. ANOVA tests were run with disease status, age, and body mass index as independent factors; significance was set to p < 0.05. Post-hoc t-tests were run when the ANOVA showed significance. Results: A total of 36 participants were enrolled, 34 of whom were included in the final APTw analysis and 24 in the sodium analysis. Estimated liver tissue sodium concentration differentiated participants with liver disease from those without, whereas amide proton transfer-weighted MRI did not. Estimated liver tissue sodium concentration negatively correlated with the Fibrosis-4 score, but amide proton transfer-weighted MRI did not correlate with any clinical marker of disease. Conclusions: Amide proton-weighted imaging was not different between groups. Estimated liver tissue sodium concentrations did differ between groups but did not provide additional information over conventional methods.
Full article
(This article belongs to the Section Abdominal Imaging)
►
Show Figures
Open AccessArticle
Compressed Sensing Reconstruction with Zero-Shot Self-Supervised Learning for High-Resolution MRI of Human Embryos
by
Kazuma Iwazaki, Naoto Fujita, Shigehito Yamada and Yasuhiko Terada
Tomography 2025, 11(8), 88; https://doi.org/10.3390/tomography11080088 - 2 Aug 2025
Abstract
►▼
Show Figures
Objectives: This study investigates whether scan time in the high-resolution magnetic resonance imaging (MRI) of human embryos can be reduced without compromising spatial resolution by applying zero-shot self-supervised learning (ZS-SSL), a deep-learning-based reconstruction method. Methods: Simulations using a numerical phantom were
[...] Read more.
Objectives: This study investigates whether scan time in the high-resolution magnetic resonance imaging (MRI) of human embryos can be reduced without compromising spatial resolution by applying zero-shot self-supervised learning (ZS-SSL), a deep-learning-based reconstruction method. Methods: Simulations using a numerical phantom were conducted to evaluate spatial resolution across various acceleration factors (AF = 2, 4, 6, and 8) and signal-to-noise ratio (SNR) levels. Resolution was quantified using a blur-based estimation method based on the Sparrow criterion. ZS-SSL was compared to conventional compressed sensing (CS). Experimental imaging of a human embryo at Carnegie stage 21 was performed at a spatial resolution of (30 μm)3 using both retrospective and prospective undersampling at AF = 4 and 8. Results: ZS-SSL preserved spatial resolution more effectively than CS at low SNRs. At AF = 4, image quality was comparable to that of fully sampled data, while noticeable degradation occurred at AF = 8. Experimental validation confirmed these findings, with clear visualization of anatomical structures—such as the accessory nerve—at AF = 4; there was reduced structural clarity at AF = 8. Conclusions: ZS-SSL enables significant scan time reduction in high-resolution MRI of human embryos while maintaining spatial resolution at AF = 4, assuming an SNR above approximately 15. This trade-off between acceleration and image quality is particularly beneficial in studies with limited imaging time or specimen availability. The method facilitates the efficient acquisition of ultra-high-resolution data and supports future efforts to construct detailed developmental atlases.
Full article

Figure 1
Open AccessArticle
Assessment of Influencing Factors and Robustness of Computable Image Texture Features in Digital Images
by
Diego Andrade, Howard C. Gifford and Mini Das
Tomography 2025, 11(8), 87; https://doi.org/10.3390/tomography11080087 - 31 Jul 2025
Abstract
►▼
Show Figures
Background/Objectives: There is significant interest in using texture features to extract hidden image-based information. In medical imaging applications using radiomics, AI, or personalized medicine, the quest is to extract patient or disease specific information while being insensitive to other system or processing variables.
[...] Read more.
Background/Objectives: There is significant interest in using texture features to extract hidden image-based information. In medical imaging applications using radiomics, AI, or personalized medicine, the quest is to extract patient or disease specific information while being insensitive to other system or processing variables. While we use digital breast tomosynthesis (DBT) to show these effects, our results would be generally applicable to a wider range of other imaging modalities and applications. Methods: We examine factors in texture estimation methods, such as quantization, pixel distance offset, and region of interest (ROI) size, that influence the magnitudes of these readily computable and widely used image texture features (specifically Haralick’s gray level co-occurrence matrix (GLCM) textural features). Results: Our results indicate that quantization is the most influential of these parameters, as it controls the size of the GLCM and range of values. We propose a new multi-resolution normalization (by either fixing ROI size or pixel offset) that can significantly reduce quantization magnitude disparities. We show reduction in mean differences in feature values by orders of magnitude; for example, reducing it to 7.34% between quantizations of 8–128, while preserving trends. Conclusions: When combining images from multiple vendors in a common analysis, large variations in texture magnitudes can arise due to differences in post-processing methods like filters. We show that significant changes in GLCM magnitude variations may arise simply due to the filter type or strength. These trends can also vary based on estimation variables (like offset distance or ROI) that can further complicate analysis and robustness. We show pathways to reduce sensitivity to such variations due to estimation methods while increasing the desired sensitivity to patient-specific information such as breast density. Finally, we show that our results obtained from simulated DBT images are consistent with what we see when applied to clinical DBT images.
Full article

Figure 1
Open AccessArticle
Reliability of Automated Amyloid PET Quantification: Real-World Validation of Commercial Tools Against Centiloid Project Method
by
Yeon-koo Kang, Jae Won Min, Soo Jin Kwon and Seunggyun Ha
Tomography 2025, 11(8), 86; https://doi.org/10.3390/tomography11080086 - 30 Jul 2025
Abstract
Background: Despite the growing demand for amyloid PET quantification, practical challenges remain. As automated software platforms are increasingly adopted to address these limitations, we evaluated the reliability of commercial tools for Centiloid quantification against the original Centiloid Project method. Methods: This retrospective study
[...] Read more.
Background: Despite the growing demand for amyloid PET quantification, practical challenges remain. As automated software platforms are increasingly adopted to address these limitations, we evaluated the reliability of commercial tools for Centiloid quantification against the original Centiloid Project method. Methods: This retrospective study included 332 amyloid PET scans (165 [18F]Florbetaben; 167 [18F]Flutemetamol) performed for suspected mild cognitive impairments or dementia, paired with T1-weighted MRI within one year. Centiloid values were calculated using three automated software platforms, BTXBrain, MIMneuro, and SCALE PET, and compared with the original Centiloid method. The agreement was assessed using Pearson’s correlation coefficient, the intraclass correlation coefficient (ICC), a Passing–Bablok regression, and Bland–Altman plots. The concordance with the visual interpretation was evaluated using receiver operating characteristic (ROC) curves. Results: BTXBrain (R = 0.993; ICC = 0.986) and SCALE PET (R = 0.992; ICC = 0.991) demonstrated an excellent correlation with the reference, while MIMneuro showed a slightly lower agreement (R = 0.974; ICC = 0.966). BTXBrain exhibited a proportional underestimation (slope = 0.872 [0.860–0.885]), MIMneuro showed a significant overestimation (slope = 1.053 [1.026–1.081]), and SCALE PET demonstrated a minimal bias (slope = 1.014 [0.999–1.029]). The bias pattern was particularly noted for FMM. All platforms maintained their trends for correlations and biases when focusing on subthreshold-to-low-positive ranges (0–50 Centiloid units). However, all platforms showed an excellent agreement with the visual interpretation (areas under ROC curves > 0.996 for all). Conclusions: Three automated platforms demonstrated an acceptable reliability for Centiloid quantification, although software-specific biases were observed. These differences did not impair their feasibility in aiding the image interpretation, as supported by the concordance with visual readings. Nevertheless, users should recognize the platform-specific characteristics when applying diagnostic thresholds or interpreting longitudinal changes.
Full article
(This article belongs to the Section Brain Imaging)
►▼
Show Figures

Figure 1
Open AccessReview
Computed Tomography and Coronary Plaque Analysis
by
Hashim Alhammouri, Ramzi Ibrahim, Rahmeh Alasmar, Mahmoud Abdelnabi, Eiad Habib, Mohamed Allam, Hoang Nhat Pham, Hossam Elbenawi, Juan Farina, Balaji Tamarappoo, Clinton Jokerst, Kwan Lee, Chadi Ayoub and Reza Arsanjani
Tomography 2025, 11(8), 85; https://doi.org/10.3390/tomography11080085 - 30 Jul 2025
Abstract
Advances in plaque imaging have transformed cardiovascular diagnostics through detailed characterization of atherosclerotic plaques beyond traditional stenosis assessment. This review outlines the clinical applications of varying modalities, including dual-layer spectral CT, photon-counting CT, dual-energy CT, and CT-derived fractional flow reserve (CT-FFR). These technologies
[...] Read more.
Advances in plaque imaging have transformed cardiovascular diagnostics through detailed characterization of atherosclerotic plaques beyond traditional stenosis assessment. This review outlines the clinical applications of varying modalities, including dual-layer spectral CT, photon-counting CT, dual-energy CT, and CT-derived fractional flow reserve (CT-FFR). These technologies offer improved spatial resolution, tissue differentiation, and functional assessment of coronary lesions. Additionally, artificial intelligence has emerged as a powerful tool to automate plaque detection, quantify burden, and refine risk prediction. Collectively, these innovations provide a more comprehensive approach to coronary artery disease evaluation and support personalized management strategies.
Full article
(This article belongs to the Special Issue New Trends in Diagnostic and Interventional Radiology)
►▼
Show Figures

Figure 1
Open AccessArticle
Imaging on the Edge: Mapping Object Corners and Edges with Stereo X-Ray Tomography
by
Zhenduo Shang and Thomas Blumensath
Tomography 2025, 11(8), 84; https://doi.org/10.3390/tomography11080084 - 29 Jul 2025
Abstract
►▼
Show Figures
Background/Objectives: X-ray computed tomography (XCT) is a powerful tool for volumetric imaging, where three-dimensional (3D) images are generated from a large number of individual X-ray projection images. However, collecting the required number of low-noise projection images is time-consuming, limiting its applicability to scenarios
[...] Read more.
Background/Objectives: X-ray computed tomography (XCT) is a powerful tool for volumetric imaging, where three-dimensional (3D) images are generated from a large number of individual X-ray projection images. However, collecting the required number of low-noise projection images is time-consuming, limiting its applicability to scenarios requiring high temporal resolution, such as the study of dynamic processes. Inspired by stereo vision, we previously developed stereo X-ray imaging methods that operate with only two X-ray projections, enabling the 3D reconstruction of point and line fiducial markers at significantly faster temporal resolutions. Methods: Building on our prior work, this paper demonstrates the use of stereo X-ray techniques for 3D reconstruction of sharp object corners, eliminating the need for internal fiducial markers. This is particularly relevant for deformation measurement of manufactured components under load. Additionally, we explore model training using synthetic data when annotated real data is unavailable. Results: We show that the proposed method can reliably reconstruct sharp corners in 3D using only two X-ray projections. The results confirm the method’s applicability to real-world stereo X-ray images without relying on annotated real training datasets. Conclusions: Our approach enables stereo X-ray 3D reconstruction using synthetic training data that mimics key characteristics of real data, thereby expanding the method’s applicability in scenarios with limited training resources.
Full article

Figure 1
Open AccessReview
Emerging PET Imaging Agents and Targeted Radioligand Therapy: A Review of Clinical Applications and Trials
by
Maierdan Palihati, Jeeban Paul Das, Randy Yeh and Kathleen Capaccione
Tomography 2025, 11(8), 83; https://doi.org/10.3390/tomography11080083 - 28 Jul 2025
Abstract
Targeted radioligand therapy (RLT) is an emerging field in anticancer therapeutics with great potential across tumor types and stages of disease. While much progress has focused on agents targeting somatostatin receptors and prostate-specific membrane antigen (PSMA), the same advanced radioconjugation methods and molecular
[...] Read more.
Targeted radioligand therapy (RLT) is an emerging field in anticancer therapeutics with great potential across tumor types and stages of disease. While much progress has focused on agents targeting somatostatin receptors and prostate-specific membrane antigen (PSMA), the same advanced radioconjugation methods and molecular targeting have spurred the development of numerous theranostic combinations for other targets. A number of the most promising agents have progressed to clinical trials and are poised to change the landscape of positron emission tomography (PET) imaging. Here, we present recent data on some of the most important emerging molecular targeted agents with their exemplar clinical images, including agents targeting fibroblast activation protein (FAP), hypoxia markers, gastrin-releasing peptide receptors (GRPrs), and integrins. These radiopharmaceuticals share the promising characteristic of being able to image multiple types of cancer. Early clinical trials have already demonstrated superiority to 18F-fluorodeoxyglucose (18F-FDG) for some, suggesting the potential to supplant this longstanding PET radiotracer. Here, we provide a primer for practicing radiologists, particularly nuclear medicine clinicians, to understand novel PET imaging agents and their clinical applications, as well as the availability of companion targeted radiotherapeutics, the status of their regulatory approval, the potential challenges associated with their use, and the future opportunities and perspectives.
Full article
(This article belongs to the Section Cancer Imaging)
►▼
Show Figures

Figure 1
Open AccessArticle
Fat Fraction MRI for Longitudinal Assessment of Bone Marrow Heterogeneity in a Mouse Model of Myelofibrosis
by
Lauren Brenner, Tanner H. Robison, Timothy D. Johnson, Kristen Pettit, Moshe Talpaz, Thomas L. Chenevert, Brian D. Ross and Gary D. Luker
Tomography 2025, 11(8), 82; https://doi.org/10.3390/tomography11080082 - 28 Jul 2025
Abstract
Background/Objectives: Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by the replacement of healthy bone marrow (BM) with malignant and fibrotic tissue. In a healthy state, bone marrow is composed of approximately 60–70% fat cells, which are replaced as disease progresses. Proton density fat
[...] Read more.
Background/Objectives: Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by the replacement of healthy bone marrow (BM) with malignant and fibrotic tissue. In a healthy state, bone marrow is composed of approximately 60–70% fat cells, which are replaced as disease progresses. Proton density fat fraction (PDFF), a non-invasive and quantitative MRI metric, enables analysis of BM architecture by measuring the percentage of fat versus cells in the environment. Our objective is to investigate variance in quantitative PDFF-MRI values over time as a marker of disease progression and response to treatment. Methods: We analyzed existing data from three cohorts of mice: two groups with MF that failed to respond to therapy with approved drugs for MF (ruxolitinib, fedratinib), investigational compounds (navitoclax, balixafortide), or vehicle and monitored over time by MRI; the third group consisted of healthy controls imaged at a single time point. Using in-house MATLAB programs, we performed a voxel-wise analysis of PDFF values in lower extremity bone marrow, specifically comparing the variance of each voxel within and among mice. Results: Our findings revealed a significant difference in PDFF values between healthy and diseased BM. With progressive disease non-responsive to therapy, the expansion of hematopoietic cells in BM nearly completely replaced normal fat, as determined by a markedly reduced PDFF and notable reduction in the variance in PDFF values in bone marrow over time. Conclusions: This study validated our hypothesis that the variance in PDFF in BM decreases with disease progression, indicating pathologic expansion of hematopoietic cells. We can conclude that disease progression can be tracked by a decrease in PDFF values. Analyzing variance in PDFF may improve the assessment of disease progression in pre-clinical models and ultimately patients with MF.
Full article
(This article belongs to the Section Cancer Imaging)
►▼
Show Figures

Figure 1
Open AccessSystematic Review
TACE Versus TARE in the Treatment of Liver-Metastatic Breast Cancer: A Systematic Review
by
Charalampos Lalenis, Alessandro Posa, Valentina Lancellotta, Marcello Lippi, Fabio Marazzi, Pierluigi Barbieri, Patrizia Cornacchione, Matthias Joachim Fischer, Luca Tagliaferri and Roberto Iezzi
Tomography 2025, 11(7), 81; https://doi.org/10.3390/tomography11070081 - 12 Jul 2025
Abstract
►▼
Show Figures
Background/Objectives: Liver metastases are common among patients with breast cancer and have a poor prognosis if left untreated. The aim of this systematic review is to evaluate and compare chemoembolization (TACE) versus radioembolization (TARE) treatments in patients with breast cancer liver-dominant metastases
[...] Read more.
Background/Objectives: Liver metastases are common among patients with breast cancer and have a poor prognosis if left untreated. The aim of this systematic review is to evaluate and compare chemoembolization (TACE) versus radioembolization (TARE) treatments in patients with breast cancer liver-dominant metastases in terms of overall survival (OS), local tumor control (LC), and toxicity. Methods: The S.P.I.D.E.R framework was used to address the clinical question. A systematic literature search using PubMed and Scopus was performed to identify full articles evaluating the efficacy of TACE and TARE in patients with liver metastases from breast cancer. Results: The literature search resulted in 10 articles for TACE, 13 articles for TARE and 1 for combined TACE/TARE, totaling 462 patients for the TACE group and 627 for the TARE group. The median LC was 68.7% for TACE and 78.9% for TARE. The median OS was 15.3 months for TACE and 11.9 for TARE. Progression at three months was 32.5% for TACE and 20.6% for TARE. Conclusions: The included studies were heterogeneous, varying widely in design, patient selection, and therapeutic protocols. Nonetheless, this systematic review suggests that locoregional therapies are effective in the treatment of liver metastases in patients with breast cancer and may improve tumor burden, alleviate symptoms and extend overall survival. The median LC of the liver metastases at three months was higher in the TARE group compared to TACE. However, the TARE group showed lower OS rates after treatment.
Full article

Figure 1
Open AccessReview
Micro-Ultrasound in the Detection of Clinically Significant Prostate Cancer: A Comprehensive Review and Comparison with Multiparametric MRI
by
Julien DuBois, Shayan Smani, Aleksandra Golos, Carlos Rivera Lopez and Soum D. Lokeshwar
Tomography 2025, 11(7), 80; https://doi.org/10.3390/tomography11070080 - 8 Jul 2025
Abstract
Background/Objectives: Multiparametric MRI (mpMRI) is widely established as the standard imaging modality for detecting clinically significant prostate cancer (csPCa), yet it can be limited by cost, accessibility, and the need for specialized radiologist interpretation. Micro-ultrasound (micro-US) has recently emerged as a more accessible
[...] Read more.
Background/Objectives: Multiparametric MRI (mpMRI) is widely established as the standard imaging modality for detecting clinically significant prostate cancer (csPCa), yet it can be limited by cost, accessibility, and the need for specialized radiologist interpretation. Micro-ultrasound (micro-US) has recently emerged as a more accessible alternative imaging modality. This review evaluates whether the evidence base for micro-US meets thresholds comparable to those that led to MRI’s guideline adoption, synthesizes diagnostic performance data compared to mpMRI, and outlines future research priorities to define its clinical role. Methods: A targeted literature review of PubMed, Embase, and the Cochrane Library was conducted for studies published between 2014 and May 2025 evaluating micro-US in csPCa detection. Search terms included “micro-ultrasound,” “ExactVu,” “PRI-MUS,” and related terminology. Study relevance was assessed independently by the authors. Extracted data included csPCa detection rates, modality concordance, and diagnostic accuracy, and were synthesized and, rarely, restructured to facilitate study comparisons. Results: Micro-US consistently demonstrated non-inferiority to mpMRI for csPCa detection across retrospective studies, prospective cohorts, and meta-analyses. Several studies reported discordant csPCa lesions detected by only one modality, highlighting potential complementarity. The recently published OPTIMUM randomized controlled trial offers the strongest individual-trial evidence to date in support of micro-US non-inferiority. Conclusions: Micro-US shows potential as an alternative or adjunct to mpMRI for csPCa detection. However, additional robust multicenter studies are needed to achieve the evidentiary strength that led mpMRI to distinguish itself in clinical guidelines.
Full article
(This article belongs to the Special Issue New Trends in Diagnostic and Interventional Radiology)
►▼
Show Figures

Figure 1
Open AccessArticle
Morphometric Analysis of Subaxial Cervical Vertebra Pedicles in the Turkish Population
by
Hande Nur Taşdemir Batir, Hatice Güler, Burcu Kamaşak Arpaçay, İzzet Ökçesiz, Halil Dönmez and Güven Kahriman
Tomography 2025, 11(7), 79; https://doi.org/10.3390/tomography11070079 - 4 Jul 2025
Abstract
►▼
Show Figures
Background/Objectives: One of the surgical interventions applied in the cervical region is the pedicle screw method. The cervical pedicle screw is stronger than any other screw method; however, use of the cervical pedicle screw is limited due to the variability in the anatomy
[...] Read more.
Background/Objectives: One of the surgical interventions applied in the cervical region is the pedicle screw method. The cervical pedicle screw is stronger than any other screw method; however, use of the cervical pedicle screw is limited due to the variability in the anatomy of the cervical vertebrae and the risks to the neurological and vascular structures in this region. This study aimed to determine the morphological features of subaxial cervical vertebrae of the adult Turkish population and to provide guidance for the pedicle screwing method. Methods: In our study, pedicle analyses were examined in the subaxial neck vertebrae of a total of 60 patients, 30 male and 30 female, using computed tomography images. In subaxial vertebrae (C3–C7), bilateral pedicle width, pedicle axis length, pedicle transverse angle, sagittal and transverse diameter of vertebral foramen, and the distance between two pedicles were measured. Results: Pedicle widths that did not fit the commonly used 3.5 mm pedicle screw were detected in both male and female patients. The mean bilateral pedicle width in male patients was found to be greater than in female patients. When the parameter results were compared according to the levels, it was found that the pedicle width, pedicle axis length, transverse diameter, and the distance between the two pedicles increased statistically significantly. Conclusions: We think that the data obtained from the study will help determine the appropriate screwing (screw selection) in subaxial vertebra pedicle surgery and increase the success of the surgical procedure.
Full article

Figure 1
Open AccessReview
Deep Learning Approaches for Automated Prediction of Treatment Response in Non-Small-Cell Lung Cancer Patients Based on CT and PET Imaging
by
Randy Guzmán Gómez, Guadalupe Lopez Lopez, Victor M. Alvarado, Froylan Lopez Lopez, Eréndira Esqueda Cisneros and Hazel López Moreno
Tomography 2025, 11(7), 78; https://doi.org/10.3390/tomography11070078 - 30 Jun 2025
Abstract
►▼
Show Figures
The rapid growth of artificial intelligence, particularly in the field of deep learning, has opened up new advances in analyzing and processing large and complex datasets. Prospects and emerging trends in this area engage the development of methods, techniques, and algorithms to build
[...] Read more.
The rapid growth of artificial intelligence, particularly in the field of deep learning, has opened up new advances in analyzing and processing large and complex datasets. Prospects and emerging trends in this area engage the development of methods, techniques, and algorithms to build autonomous systems that perform tasks with minimal human action. In medical practice, radiological imaging technologies systematically boost progress in the clinical monitoring of cancer through the information that can be analyzed in these images. This review gives insight into deep learning-based approaches that strengthen the assessment of the response to the treatment of non-small-cell lung cancer. This systematic survey delves into the various approaches to morphological and metabolic changes observed in computerized tomography (CT) and positron emission tomography (PET) imaging. We highlight the challenges and opportunities for feasible integration of deep learning computer-based tools in evaluating treatments in lung cancer patients, after which CT and PET-based strategies are contrasted. The investigated deep learning methods are organized and described as instruments for classification, clustering, and prediction, which can contribute to the design of automated and objective assessment of lung tumor responses to treatments.
Full article

Figure 1
Open AccessArticle
Optimizing Imaging Parameters for Assessment of Hepatocellular Carcinoma Using Photon-Counting Detector Computed Tomography—Impact of Reconstruction Kernel and Slice Thickness
by
Anna Szelenyi, Philipp Stelzer, Christian Wassipaul, Jakob Kittinger, Andreas Strassl, Victor Schmidbauer, Martin Luther Watzenböck, Florian Lindenlaub, Michael Arnoldner, Michael Weber, Matthias Pinter, Ruxandra-Iulia Milos and Dietmar Tamandl
Tomography 2025, 11(7), 77; https://doi.org/10.3390/tomography11070077 - 27 Jun 2025
Abstract
►▼
Show Figures
Background: The use of photon-counting detector computed tomography (PCD-CT) has improved image quality in cardiac, pulmonary, and musculoskeletal imaging. Abdominal imaging research, especially about the use of PCD-CT in hepatocellular carcinoma (HCC), is sparse. Objectives: We aimed to compare the image quality of
[...] Read more.
Background: The use of photon-counting detector computed tomography (PCD-CT) has improved image quality in cardiac, pulmonary, and musculoskeletal imaging. Abdominal imaging research, especially about the use of PCD-CT in hepatocellular carcinoma (HCC), is sparse. Objectives: We aimed to compare the image quality of tumors, the liver parenchyma, and the vasculature in patients with HCC using PCD-CT reconstructions at different slice thicknesses and kernels to identify the most appropriate settings for the clinical routine. Methods: CT exams from twenty adult patients with HCC performed with a clinically approved, first-generation PCD-CT scanner (Naeotom Alpha®, Siemens Healthineers), were retrospectively reviewed. For each patient, images were reconstructed at four different sharp kernels, designed for abdominal imaging (Br40; Br44; Br48; Br56) and at three slice thicknesses (0.4 mm; 1 mm; 3 mm). The reconstruction with the Br40 kernel at 3 mm (Br403 mm) was used as a clinical reference. Three readers independently assessed the image quality of different anatomical abdominal structures and hypervascular HCC lesions using a five-point Likert scale. In addition, image sharpness was assessed using line-density profiles. Results: Compared with the clinical reference, the Br441 mm and Br481 mm reconstructions were rated superior for the assessment of the hepatic vasculature (median difference +0.67 [+0.33 to +1.33], p < 0.001 and +1.00 [+0.67 to +1.67], p < 0.001). Reconstructions for Br401 mm (+0.33 [−0.67 to +1.00], p < 0.001), and Br443 mm (+0.0 [0.0 to +1.00], p = 0.030) were scored superior for overall image quality. The noise demonstrated a continuous increase when using sharper kernels and thinner slices than Br403 mm (p < 0.001), leading to a decrease in contrast-to-noise ratio. Although there was a trend toward increased image sharpness using the slope analysis with higher kernels, this was not significantly different compared with the reference standard. Conclusion: PCD-CT reconstruction Br401 mm was the most suitable setting for overall image quality, while reconstructions with sharper kernels (Br441 mm and Br481 mm) can be considered for the assessment of the hepatic vasculature in patients with HCC.
Full article

Figure 1
Open AccessArticle
Qualitative and Quantitative Computed Tomography Analyses of Lung Adenocarcinoma for Predicting Spread Through Air Spaces
by
Fumi Kameda, Yoshie Kunihiro, Masahiro Tanabe, Masatoshi Nakashima, Taiga Kobayashi, Toshiki Tanaka, Yoshinobu Hoshii and Katsuyoshi Ito
Tomography 2025, 11(7), 76; https://doi.org/10.3390/tomography11070076 - 27 Jun 2025
Abstract
►▼
Show Figures
Background/Objectives: Spread through air spaces (STAS) is defined as the spread of tumor cells into the parenchymal alveolar space beyond the margins of the main tumor, and it is associated with worse clinical outcomes in resected lung adenocarcinoma. This study aimed to evaluate
[...] Read more.
Background/Objectives: Spread through air spaces (STAS) is defined as the spread of tumor cells into the parenchymal alveolar space beyond the margins of the main tumor, and it is associated with worse clinical outcomes in resected lung adenocarcinoma. This study aimed to evaluate the preoperative computed tomography (CT) findings of primary lung adenocarcinoma in surgically resected T1 cases and to compare CT findings with and without STAS. Methods: A total of 145 patients were included in this study. The following factors were evaluated on CT images: nodule type (pure ground-glass nodule [GGN], part-solid nodule, or solid nodule), margin (smooth or irregular), the presence of lobulation, spicula, cavity, calcification, central low attenuation, peripheral opacity (well-defined or ill-defined), air bronchogram, satellite lesions, pleural retraction, pulmonary emphysema, and interstitial pneumonia; CT values (maximum, minimum, and mean); volume (tumor and solid component); and diameter (tumor and solid component). CT criteria were compared between the presence and absence of STAS. Results: Lobulation and central low attenuation were significantly more frequent in patients with STAS (p < 0.05). The mean CT value, and the volume, rate, and diameter of the solid component were significantly larger in cases with STAS (p < 0.05). A multiple logistic regression analysis identified central low attenuation as an indicator of the presence of STAS (p < 0.001; odds ratio, 3.993; 95% confidence interval, 1.993–8.001). Conclusions: Quantitative and qualitative analyses are useful for differentiating between the presence and absence of STAS.
Full article

Figure 1
Open AccessArticle
Endovascular Treatment of Extracranial Arteriovenous Malformations: A Retrospective Monocentric Case-Series Study
by
Giuseppe Sarti, Giovanni Barbato, Francesco Tiralongo, Gianpaolo Santini, Francesco Arienzo, Davide Nilo, Fabio Tortora, Alfonso Reginelli, Rosita Comune, Maria Borrelli, Stefania Tamburrini, Antonio Basile and Mariano Scaglione
Tomography 2025, 11(7), 75; https://doi.org/10.3390/tomography11070075 - 26 Jun 2025
Abstract
Background: Extracranial arteriovenous malformations (AVMs) are rare congenital vascular anomalies that often require endovascular treatment due to symptoms such as pain, bleeding, or functional impairment. Endovascular strategies include arterial, venous, or combined embolization approaches; however, recurrence remains a major challenge. We retrospectively evaluate
[...] Read more.
Background: Extracranial arteriovenous malformations (AVMs) are rare congenital vascular anomalies that often require endovascular treatment due to symptoms such as pain, bleeding, or functional impairment. Endovascular strategies include arterial, venous, or combined embolization approaches; however, recurrence remains a major challenge. We retrospectively evaluate the technical success, safety, and clinical outcomes of arterial-only versus combined arterial and venous embolization for the treatment of extracranial AVMs. Materials and Methods: This single-center retrospective study included 14 patients (mean age 31.8 ± 21.7 years; 64% female) with symptomatic extracranial AVMs (Schobinger stage II) treated between 2017 and 2023. AVMs were classified angiographically (Yakes classification) and treated with embolization via arterial or combined access routes. The primary endpoint was technical success (defined as angiographic nidus occlusion), while secondary endpoints included clinical recurrence and procedure-related complications. Follow-up included clinical and Doppler ultrasound assessments. Results: Nine patients (64%) underwent arterial embolization alone; five (36%) received combined arterial and venous embolization, including Lauromacrogol injection via direct puncture. Technical success was achieved in all cases (100%). Clinical recurrence occurred in two patients (14%), both from the arterial-only group. One major complication (tongue ischemia) occurred in a single patient (7%). No complications or recurrences were observed in the combined treatment group. Statistical analysis showed no significant difference in recurrence or complication rates between groups.
Full article
(This article belongs to the Special Issue New Trends in Diagnostic and Interventional Radiology)
►▼
Show Figures

Figure 1
Open AccessArticle
Voxel Size and Field of View Influence on Periodontal Bone Assessment Using Four CBCT Systems: An Experimental Ex Vivo Analysis
by
Victória Geisa Brito de Oliveira, Polyane Mazucatto Queiroz, Alessandra Rocha Simões, Mônica Ghislaine Oliveira Alves, Maria Aparecida Neves Jardini, André Luiz Ferreira Costa and Sérgio Lucio Pereira de Castro Lopes
Tomography 2025, 11(7), 74; https://doi.org/10.3390/tomography11070074 - 25 Jun 2025
Abstract
►▼
Show Figures
Objective: This ex vivo study aimed to evaluate the influence of different acquisition protocols, combining voxel size and field of view (FOV), across four cone-beam computed tomography (CBCT) systems, on the accuracy of alveolar bone level measurements for periodontal assessment. Materials and Methods:
[...] Read more.
Objective: This ex vivo study aimed to evaluate the influence of different acquisition protocols, combining voxel size and field of view (FOV), across four cone-beam computed tomography (CBCT) systems, on the accuracy of alveolar bone level measurements for periodontal assessment. Materials and Methods: A dry human mandible was used, with standardized radiopaque markers placed on the cementoenamel junction (CEJ) of the buccal–mesial and buccal–distal aspects of teeth 34 and 43. CBCT scans were performed using four systems—Veraview® X800, OP300 Pro®, I-CAT Next Generation®, and Orthophos XG®—applying various combinations of field of view (FOV) and voxel resolution available in each device. Reference measurements were obtained in situ using a digital caliper. CBCT images were exported in DICOM format and analyzed with OnDemand3D software (version 4.6) to obtain paracoronal sections. Linear measurements from the CEJ to the alveolar crest were recorded in triplicate and compared to the gold standard using ANOVA and the Dunnett test (α = 0.05). Results: Protocols with smaller voxel sizes and limited FOVs generally yielded measurements closer to the gold standard. However, some larger-FOV protocols with intermediate voxel sizes also achieved comparable accuracy. Among the systems, the I-CAT showed lower agreement within in situ measurements, while others demonstrated reliable performance depending on the acquisition parameters. Conclusions: The findings suggest that CBCT protocols with smaller voxel sizes and reduced FOVs can enhance measurement accuracy in periodontal bone assessments. Nevertheless, intermediate protocols may offer a balance between diagnostic quality and radiation exposure, aligning with the ALADA principle. This study reinforces the need for standardized acquisition parameters tailored to periodontal imaging.
Full article

Figure 1
Open AccessArticle
Effects of Trapezius Muscle Self-Stretching on Muscle Stiffness and Choroidal Circulatory Dynamics: An Evaluation Using Ultrasound Strain Elastography and Laser Speckle Flowgraphy
by
Miki Yoshimura, Takanori Taniguchi, Takeshi Yoshitomi and Yuki Hashimoto
Tomography 2025, 11(7), 73; https://doi.org/10.3390/tomography11070073 - 25 Jun 2025
Abstract
►▼
Show Figures
Background/Objectives: The relationship between upper trapezius muscle stiffness and choroidal circulatory dynamics remains unclear. This study aimed to examine changes in upper trapezius muscle stiffness and choroidal circulatory dynamics before and after trapezius muscle self-stretching. Methods: Eighteen healthy adults in their 20s (median
[...] Read more.
Background/Objectives: The relationship between upper trapezius muscle stiffness and choroidal circulatory dynamics remains unclear. This study aimed to examine changes in upper trapezius muscle stiffness and choroidal circulatory dynamics before and after trapezius muscle self-stretching. Methods: Eighteen healthy adults in their 20s (median age ± standard error: 21.0 ± 4.9 years) and eight healthy adults in their 40s (age: 43.0 ± 15.2 years) were included. Intraocular pressure (IOP); systolic, diastolic, and mean blood pressure (BP); heart rate (HR); ocular perfusion pressure (OPP); and salivary alpha-amylase (sAA) activity—as an indicator of autonomic nervous system function—were measured at baseline and after trapezius muscle self-stretching. Upper trapezius muscle stiffness was assessed using ultrasound strain elastography, whereas choroidal circulation was evaluated using laser speckle flowgraphy to determine the mean blur rate (MBR), a relative measure of macular blood flow velocity. Results: Significant reductions in systolic and mean BP; OPP; sAA activity; and MBR were observed after trapezius muscle self-stretching in both groups; however, no significant changes were found in IOP and HR. A significant decrease in upper trapezius muscle stiffness was observed after self-stretching only in the 20-year-old group. Conclusions: In healthy adults in their 20s and 40s, trapezius muscle self-stretching may enhance parasympathetic nervous system activity, resulting in decreased systemic and choroidal circulatory parameters. However, the reduction in muscle stiffness observed only in younger participants suggests that short-term self-stretching may be less effective in reducing trapezius muscle stiffness with advancing age.
Full article

Figure 1
Open AccessArticle
AI-CAD-Guided Mammographic Assessment of Tumor Size and T Stage: Concordance with MRI for Clinical Staging in Breast Cancer Patients Considered for NAC
by
Ga Eun Park, Kabsoo Shin, Han Song Mun and Bong Joo Kang
Tomography 2025, 11(7), 72; https://doi.org/10.3390/tomography11070072 - 24 Jun 2025
Abstract
Objectives: To evaluate the agreement between AI-CAD-guided mammographic and MRI measurements of tumor size and T stage in breast cancer patients being considered for neoadjuvant chemotherapy (NAC). Methods: This retrospective study included 144 women (mean age, 52 ± 11 years) with
[...] Read more.
Objectives: To evaluate the agreement between AI-CAD-guided mammographic and MRI measurements of tumor size and T stage in breast cancer patients being considered for neoadjuvant chemotherapy (NAC). Methods: This retrospective study included 144 women (mean age, 52 ± 11 years) with invasive breast cancer who subsequently received NAC and underwent both AI-CAD mammography (score ≥ 10) and pre-treatment MRI. Tumor sizes from AI-CAD contours were compared with MRI using Pearson correlation, intraclass correlation coefficients (ICCs), and Bland–Altman analysis. Concordance was defined as a ±0.5 cm difference. The contour showing the highest agreement was used to compare T stage with MRI using weighted kappa. Results: The mean AI-CAD abnormality score was 86.3 ± 22.2. Tumor sizes on mammography were 3.0 ± 1.2 cm (inner), 3.8 ± 1.5 cm (middle), and 4.8 ± 2.2 cm (outer), while the MRI-measured tumor size was 4.0 ± 1.9 cm. The middle contour showed the strongest correlation with MRI (r = 0.897; ICC = 0.866), the smallest mean difference (–0.19 cm; limits of agreement, –1.87 to 1.49), and the highest concordance (61.1%). Agreement was higher in mass-only lesions than in NME-involved lesions (ICC = 0.883 vs. 0.775; concordance, 70.9% vs. 46.6%). T stage comparison using the middle contour showed substantial agreement with MRI (κ = 0.743 [95% CI, 0.634–0.852]; agreement, 88.2%), with higher concordance in mass-only lesions (93.0%) than NME-involved lesions (81.0%) and more frequent understaging in the latter (17.2% vs. 2.3%). Conclusions: AI-CAD-guided mammographic assessment using the middle contour demonstrated good agreement with MRI for tumor size and T stage, indicating its value as a supportive tool for clinical staging in MRI-limited settings.
Full article
(This article belongs to the Special Issue Imaging in Cancer Diagnosis)
►▼
Show Figures

Figure 1
Open AccessArticle
Longitudinal Overlap and Metabolite Analysis in Spectroscopic MRI-Guided Proton Beam Therapy in Pediatric High-Grade Glioma
by
Abinand C. Rejimon, Anuradha G. Trivedi, Vicki Huang, Karthik K. Ramesh, Natia Esiashvilli, Eduard Schreibmann, Hyunsuk Shim, Kartik Reddy and Bree R. Eaton
Tomography 2025, 11(6), 71; https://doi.org/10.3390/tomography11060071 - 19 Jun 2025
Abstract
Background: Pediatric high-grade glioma (pHGG) is a highly aggressive cancer with unique biology distinct from adult high-grade glioma, limiting the effectiveness of standard treatment protocols derived from adult research. Objective: The purpose of this report is to present preliminary results from an ongoing
[...] Read more.
Background: Pediatric high-grade glioma (pHGG) is a highly aggressive cancer with unique biology distinct from adult high-grade glioma, limiting the effectiveness of standard treatment protocols derived from adult research. Objective: The purpose of this report is to present preliminary results from an ongoing pilot study integrating spectroscopic magnetic resonance imaging (sMRI) to guide proton beam therapy and longitudinal imaging analysis in pediatric patients with high-grade glioma (pHGG). Methods: Thirteen pediatric patients under 21 years old with supratentorial WHO grade III-IV glioma underwent baseline and serial whole-brain spectroscopic MRI alongside standard structural MRIs. Radiation targets were defined using T1-weighted contrast enhanced, T2-FLAIR, and Cho/NAA ≥ 2X maps. Longitudinal analyses included voxel-level metabolic change maps and spatial overlap metrics comparing pre-proton therapy and post-. Results: Six patients had sufficient longitudinal data; five received sMRI-guided PBT. Significant positive correlation (R2 = 0.89, p < 0.0001) was observed between T2-FLAIR and Cho/NAA ≥ 2X volumes. Voxel-level difference maps of Cho/NAA and Choline revealed dynamic metabolic changes across follow-up scans. Analyzing Cho/NAA and Cho changes over time allowed differentiation between true progression and pseudoprogression, which conventional MRI alone struggles to achieve. Conclusions: Longitudinal sMRI enhanced metabolic tracking in pHGG, detects early tumor changes, and refines RT targeting beyond structural imaging. This first in-kind study highlights the potential of sMRI biomarkers in tracking treatment effects and emphasizes the complementary roles of metabolic and radiographic metrics in evaluating therapy response in pHGG.
Full article
(This article belongs to the Section Cancer Imaging)
►▼
Show Figures

Figure 1
Open AccessArticle
Assessment of Mandibular Bone Architecture in Patients with Endocrine Disorders Using Fractal Dimension and Histogram Analysis
by
Elif Yıldızer, Saliha Kubra Sari, Fatih Peker, Ali Riza Erdogan, Kevser Sancak and Sinan Yasin Ertem
Tomography 2025, 11(6), 70; https://doi.org/10.3390/tomography11060070 - 18 Jun 2025
Abstract
►▼
Show Figures
Objective: Endocrine disorders, including diabetes mellitus and thyroid dysfunctions, can significantly impact bone metabolism and structure. This study aimed to assess mandibular trabecular architecture in patients with type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), hyperthyroidism, and hypothyroidism using fractal dimension
[...] Read more.
Objective: Endocrine disorders, including diabetes mellitus and thyroid dysfunctions, can significantly impact bone metabolism and structure. This study aimed to assess mandibular trabecular architecture in patients with type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), hyperthyroidism, and hypothyroidism using fractal dimension (FD) and histogram analyses (HA), comparing the findings with a healthy control group. Methods: This retrospective study analyzed panoramic radiographs from 200 individuals, comprising 40 patients in each of the four endocrine disorder groups and 40 healthy controls. Fractal dimension and histogram-based pixel intensity analyses were conducted using ImageJ™ (version 1.53) software. Four standardized regions of interest (ROI) were evaluated on the right mandible, and statistical comparisons were conducted across groups using one-way analysis of variance (ANOVA), t-test, Mann–Whitney U, and Spearman correlation analyses. Results: Age and gender distributions did not differ significantly between groups. FD analysis revealed a significant reduction at ROI1 in the hyperthyroidism group compared to controls (p = 0.018); however, no other significant FD differences were observed among the remaining groups or ROIs. A significant positive correlation was found between FD and histogram values at ROI1 and ROI2 (p < 0.001), while pixel intensity values did not differ significantly across groups in any ROI. Conclusion: Although no significant differences were found in diabetic groups, the decreased FD in hyperthyroid patients suggests that FD analysis may be a useful non-invasive method to detect subtle bone alterations. Further research with larger sample sizes and comprehensive biochemical analyses are needed to confirm these findings.
Full article

Figure 1

Journal Menu
► ▼ Journal Menu-
- Tomography Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
- 10th Anniversary
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Anatomia, Biomedicines, IJMS, Medicina, Tomography
Human Anatomy and Pathophysiology, 3rd Edition
Topic Editors: Francesco Cappello, Mugurel Constantin RusuDeadline: 31 May 2026

Conferences
Special Issues
Special Issue in
Tomography
Clinical and Molecular Analytic in Neuro-Oncology
Guest Editors: Alessandro Pesce, Angelo Pompucci, Maurizio Salvati, Alessandro FratiDeadline: 30 November 2025
Special Issue in
Tomography
Emergent Perspectives in Oncology Imaging
Guest Editors: Mariano Scaglione, Leandra PiscopoDeadline: 30 December 2025
Special Issue in
Tomography
Orthopaedic Radiology: Clinical Diagnosis and Application
Guest Editor: Olumide A. DanisaDeadline: 31 December 2025
Special Issue in
Tomography
Cutting-Edge Applications: Artificial Intelligence and Deep Learning Revolutionizing CT and MRI
Guest Editor: Giovanni FotiDeadline: 25 March 2026