Newborn Screening: Promoting Quality to Optimise Benefit and Reduce Harm

Special Issue Editors

Newborn Screening and Molecular Biology Branch, Division of Laboratory Sciences, National Center for Environmental Health, US Centers for Disease Control and Prevention, 4770 Buford Highway, NE, Mail Stop F-19, Atlanta, GA 30341, USA
Interests: quality assurance; newborn screening; filter paper blood collection device

E-Mail
Guest Editor
Department of Clinical Chemistry, Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, UK
Interests: quality assurance; inherited metabolic disorders; genomics; IT supporting patients; system governance
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In this Special Issue, we present articles that seek to integrate practical requirements to operate and manage high-throughput public health programmes, maintaining and continually improving quality in all its aspects as it bears upon the wellbeing of the families and young patients who may be affected.

The topics to be covered will include: the role of accreditation in maintaining quality in the screening laboratory; the practice and use of external quality assurance to promote a culture of quality in the laboratory; the scrutiny of assay standardisation and methodology to maintain optimum assay performance; an understanding of the factors that affect uncertainty of measurement including blood spot quality and its potential impact on screening; the challenges posed by assuring quality in the genomic era; the importance of understanding the limitations of blood spot assays when used in patient monitoring; and, perhaps most crucially, the co-ordination of national proficiency testing schemes that seek to describe and monitor key performance indicators as they assess functionality within the newborn screening pathway as a whole.

Dr. Joanne Mei
Prof. Dr. Jim R. Bonham
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Neonatal Screening is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • External quality assurance
  • Quality indicators
  • Quality improvement
  • Standardization
  • Dried blood spots
  • Newborn screening assays
  • Genomics
  • Specimen quality
  • Public health

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

12 pages, 1043 KiB  
Article
Philippine Performance Evaluation and Assessment Scheme (PPEAS): Experiences in Newborn Screening System Quality Improvement
by Carmencita D. Padilla, Bradford L. Therrell, Karen Asuncion R. Panol, Riza Concordia N. Suarez, Ma. Elouisa L. Reyes, Charity M. Jomento, Ebner Bon G. Maceda, Jovy Ann C. Lising, Frederick David E. Beltran and Lita L. Orbillo
Int. J. Neonatal Screen. 2020, 6(4), 95; https://doi.org/10.3390/ijns6040095 - 11 Dec 2020
Cited by 13 | Viewed by 7641
Abstract
Newborn Bloodspot Screening (NBS) has existed for over 60 years, having been initiated by Guthrie in the U.S. In the Philippines, NBS was introduced in 1996 and later was supported by legislation. The NBS program now includes 29 conditions, covering 91.6% of the [...] Read more.
Newborn Bloodspot Screening (NBS) has existed for over 60 years, having been initiated by Guthrie in the U.S. In the Philippines, NBS was introduced in 1996 and later was supported by legislation. The NBS program now includes 29 conditions, covering 91.6% of the newborn population in 2019. Program growth and expansion necessitated development of a formal performance evaluation and assessment scheme (PEAS) for monitoring performance and for continuously improving quality. This study’s objective was to present the development, implementation, and results to date of the Philippine Performance PEAS (PPEAS). Using the comprehensive listing of laboratory and non-laboratory elements in the model PEAS system in the U.S., PPEAS tools were developed for critical Philippine NBS system components: regional Department of Health (national health agency, Philippines) (DOH) offices (CHDs), NBS laboratories (NSCs), NBS specimen submitters (NSFs), and long-term case management centers (NBSCCs). Data generated from the various PPEAS have been periodically reviewed and analyzed for NBS system impact. PPEAS were developed to facilitate quality improvement at various levels of the Philippine NBS system. PPEAS identified successes, gaps, and challenges to be addressed by NSCs, NSFs, CHDs, and NBSCCs with the assistance of the Newborn Screening Reference Center and the Department of Health. Full article
Show Figures

Figure 1

9 pages, 763 KiB  
Article
Evaluation of a Common Internal Standard Material to Reduce Inter-Laboratory Variation and Ensure the Quality, Safety and Efficacy of Expanded Newborn Screening Results When Using Flow Injection Analysis Tandem Mass Spectrometry with Internal Calibration
by Rachel S. Carling, Catharine John, Philippa Goddard, Caroline Griffith, Simon Cowen, Christopher Hopley and Stuart J. Moat
Int. J. Neonatal Screen. 2020, 6(4), 92; https://doi.org/10.3390/ijns6040092 - 19 Nov 2020
Cited by 3 | Viewed by 3074
Abstract
In 2015, the newborn screening (NBS) programmes in England and Wales were expanded to include four additional disorders: Classical Homocystinuria, Isovaleric Acidemia, Glutaric Aciduria Type 1 and Maple Syrup Urine Disease, bringing the total number of analytes quantified to eight: phenylalanine, tyrosine, leucine, [...] Read more.
In 2015, the newborn screening (NBS) programmes in England and Wales were expanded to include four additional disorders: Classical Homocystinuria, Isovaleric Acidemia, Glutaric Aciduria Type 1 and Maple Syrup Urine Disease, bringing the total number of analytes quantified to eight: phenylalanine, tyrosine, leucine, methionine, isovalerylcarnitine, glutarylcarnitine, octanoylcarnitine and decanoylcarnitine. Post-implementation, population data monitoring showed that inter-laboratory variation was greater than expected, with 90th centiles varying from 17% to 59%. We evaluated the effect of stable isotope internal standard (IS) used for quantitation on inter-laboratory variation. Four laboratories analysed routine screening samples (n > 101,820) using a common IS. Inter-laboratory variation was determined for the eight analytes and compared with results obtained using an in-house common IS (n > 102,194). A linear mixed-effects model was fitted to the data. Using a common IS mix reduced the inter-laboratory variation significantly (p < 0.05) for five analytes. For three analytes, the lack of significance was explained by use of individual laboratory “calibration factors”. For screening programmes where laboratories adhere to single analyte cut-off values (COVs), it is important that inter-laboratory variation is minimised, primarily to prevent false positive results. Whilst the use of a common IS helps achieve this, it is evident that instrument set-up also contributes to inter-laboratory variation. Full article
Show Figures

Figure 1

15 pages, 2383 KiB  
Article
Harmonizing Newborn Screening Laboratory Proficiency Test Results Using the CDC NSQAP Reference Materials
by Charles Austin Pickens, Maya Sternberg, Mary Seeterlin, Víctor R. De Jesús, Mark Morrissey, Adrienne Manning, Sonal Bhakta, Patrice K. Held, Joanne Mei, Carla Cuthbert and Konstantinos Petritis
Int. J. Neonatal Screen. 2020, 6(3), 75; https://doi.org/10.3390/ijns6030075 - 17 Sep 2020
Cited by 10 | Viewed by 3881
Abstract
Newborn screening (NBS) laboratories cannot accurately compare mass spectrometry-derived results and cutoff values due to differences in testing methodologies. The objective of this study was to assess harmonization of laboratory proficiency test (PT) results using quality control (QC) data. Newborn Screening Quality Assurance [...] Read more.
Newborn screening (NBS) laboratories cannot accurately compare mass spectrometry-derived results and cutoff values due to differences in testing methodologies. The objective of this study was to assess harmonization of laboratory proficiency test (PT) results using quality control (QC) data. Newborn Screening Quality Assurance Program (NSQAP) QC and PT data reported from 302 laboratories in 2019 were used to compare results among laboratories. QC materials were provided as dried blood spot cards which included a base pool and the base pool enriched with specific concentrations of metabolites in a linear range. QC data reported by laboratories were regressed on QC data reported by the Centers for Disease Control and Prevention (CDC), and laboratory’s regression parameters were used to harmonize their PT result. In general, harmonization tended to reduce overall variation in PT data across laboratories. The metabolites glutarylcarnitine (C5DC), tyrosine, and phenylalanine were displayed to highlight inter- and intra-method variability in NBS results. Several limitations were identified using retrospective data for harmonization, and future studies will address these limitations to further assess feasibility of using NSQAP QC data to harmonize PT data. Harmonizing NBS data using common QC materials appears promising to aid result comparison between laboratories. Full article
Show Figures

Figure 1

8 pages, 1701 KiB  
Article
National Program for External Quality Assessment of Chinese Newborn Screening Laboratories
by Yuxuan Du, Wei Wang, Jiali Liu, Zhixin Zhang, Zhen Zhao, Falin He, Shuai Yuan and Zhiguo Wang
Int. J. Neonatal Screen. 2020, 6(2), 38; https://doi.org/10.3390/ijns6020038 - 9 May 2020
Cited by 6 | Viewed by 2924
Abstract
Objectives: To analyze the coefficient of variation (CV) of external quality assessment (EQA) in Chinese newborn screening (NBS) laboratories. Method: EQA’s robust CV was analyzed by the Clinet-EQA evaluation system. Results: Participating laboratories of the EQA program increased annually. There was more than [...] Read more.
Objectives: To analyze the coefficient of variation (CV) of external quality assessment (EQA) in Chinese newborn screening (NBS) laboratories. Method: EQA’s robust CV was analyzed by the Clinet-EQA evaluation system. Results: Participating laboratories of the EQA program increased annually. There was more than a 11-fold increase in phenylalanine (Phe) and thyroid stimulating hormone (TSH). It has shown a declining robust CV, which has tended to level off in recent years. The interquartile range (IQR) of Phe and TSH’s robust CV has decreased from 15.5% to 1.5% and from 22.8% to 1.8%, respectively. Compared to bacterial inhibition assay (BIA), the robust CV of Phe has been shown to be relatively reduced in the fluorescence assay and quantitative enzymatic assay (QEA). The robust CV by ELISA was relatively unstable compared to DELFIA and FEIA. In addition, the robust CVs of glucose-6-phosphate dehydrogenase (G6PD) and 17-alpha-hydroxy progesterone (17-OHP) by Genetic Screening Processor (GSP) were lower than other systems. The median of robust CV by non-derivatized MS/MS (Fenghua) in Phe and free carnitine were around 2.2–4.7% and 2.6–5.2%. Conclusion: Neonatal screening has developed rapidly in China and the majority of participant laboratories had satisfactory performance for the quantitative results. Full article
Show Figures

Figure 1

15 pages, 3920 KiB  
Article
Assessing the Performance of Dried-Blood-Spot DNA Extraction Methods in Next Generation Sequencing
by Miyono M. Hendrix, Carla D. Cuthbert and Suzanne K. Cordovado
Int. J. Neonatal Screen. 2020, 6(2), 36; https://doi.org/10.3390/ijns6020036 - 30 Apr 2020
Cited by 13 | Viewed by 5946
Abstract
An increasing number of newborn screening laboratories in the United States and abroad are moving towards incorporating next-generation sequencing technology, or NGS, into routine screening, particularly for cystic fibrosis. As more programs utilize this technology for both cystic fibrosis and beyond, it is [...] Read more.
An increasing number of newborn screening laboratories in the United States and abroad are moving towards incorporating next-generation sequencing technology, or NGS, into routine screening, particularly for cystic fibrosis. As more programs utilize this technology for both cystic fibrosis and beyond, it is critical to identify appropriate DNA extraction methods that can be used with dried blood spots that will result in consistent, high-quality sequencing results. To provide comprehensive quality assurance and technical assistance to newborn screening laboratories wishing to incorporate NGS assays, CDC’s Newborn Screening and Molecular Biology Branch designed a study to evaluate the performance of nine commercial or laboratory-developed DNA extraction methods that range from a highly purified column extraction to a crude detergent-based no-wash boil prep. The DNA from these nine methods was used in two NGS library preparations that interrogate the CFTR gene. All DNA extraction methods including the cruder preps performed reasonably well with both library preps. One lower-concentration, older sample was excluded from one of the assay evaluations due to poor performance across all DNA extraction methods. When 84 samples, versus eight, were run on a flow cell, the DNA quality and quantity were more significant variables. Full article
Show Figures

Figure 1

13 pages, 516 KiB  
Article
Development of National Newborn Screening Quality Indicators in the United States
by Careema Yusuf, Marci K. Sontag, Joshua Miller, Yvonne Kellar-Guenther, Sarah McKasson, Scott Shone, Sikha Singh and Jelili Ojodu
Int. J. Neonatal Screen. 2019, 5(3), 34; https://doi.org/10.3390/ijns5030034 - 12 Sep 2019
Cited by 16 | Viewed by 4120
Abstract
Newborn screening is a public health program facilitated by state public health departments with the goal of improving the health of affected newborns throughout the country. Experts in the newborn screening community established a panel of eight quality indicators (QIs) to track quality [...] Read more.
Newborn screening is a public health program facilitated by state public health departments with the goal of improving the health of affected newborns throughout the country. Experts in the newborn screening community established a panel of eight quality indicators (QIs) to track quality practices within and across the United States newborn screening system. The indicators were developed following iterative refinement, consensus building, and evaluation. The Newborn Screening Technical assistance and Evaluation Program (NewSTEPs) implemented a national data repository in 2013 that captures the quality improvement metrics from each state. The QIs span the newborn screening process from collection of a dried blood spot through medical intervention for a screened condition. These data are collected and analyzed to support data-driven outcome assessments and tracking performance to improve the quality of the newborn screening system. Full article
Show Figures

Figure 1

Review

Jump to: Research, Other

16 pages, 852 KiB  
Review
Development of Strategies to Decrease False Positive Results in Newborn Screening
by Sabrina Malvagia, Giulia Forni, Daniela Ombrone and Giancarlo la Marca
Int. J. Neonatal Screen. 2020, 6(4), 84; https://doi.org/10.3390/ijns6040084 - 2 Nov 2020
Cited by 38 | Viewed by 6279
Abstract
The expansion of national newborn screening (NBS) programmes has provided significant benefits in the diagnosis and early treatment of several rare, heritable conditions, preventing adverse health outcomes for most affected infants. New technological developments have enabled the implementation of testing panel covering over [...] Read more.
The expansion of national newborn screening (NBS) programmes has provided significant benefits in the diagnosis and early treatment of several rare, heritable conditions, preventing adverse health outcomes for most affected infants. New technological developments have enabled the implementation of testing panel covering over 50 disorders. Consequently, the increment of false positive rate has led to a high number of healthy infants recalled for expensive and often invasive additional testing, opening a debate about the harm-benefit ratio of the expanded newborn screening. The false-positive rate represents a challenge for healthcare providers working in NBS systems. Here, we give an overview on the most commonly used strategies for decreasing the adverse effects due to inconclusive screening results. The focus is on NBS performance improvement through the implementation of analytical methods, the application of new and more informative biomarkers, and by using post-analytical interpretive tools. These strategies, used as part of the NBS process, can to enhance the positive predictive value of the test and reduce the parental anxiety and healthcare costs related to the unnecessary tests and procedures. Full article
Show Figures

Figure 1

12 pages, 763 KiB  
Review
Translating Molecular Technologies into Routine Newborn Screening Practice
by Sarah M. Furnier, Maureen S. Durkin and Mei W. Baker
Int. J. Neonatal Screen. 2020, 6(4), 80; https://doi.org/10.3390/ijns6040080 - 15 Oct 2020
Cited by 23 | Viewed by 4155 | Correction
Abstract
As biotechnologies advance and better treatment regimens emerge, there is a trend toward applying more advanced technologies and adding more conditions to the newborn screening (NBS) panel. In the current Recommended Uniform Screening Panel (RUSP), all conditions but one, congenital hypothyroidism, have well-defined [...] Read more.
As biotechnologies advance and better treatment regimens emerge, there is a trend toward applying more advanced technologies and adding more conditions to the newborn screening (NBS) panel. In the current Recommended Uniform Screening Panel (RUSP), all conditions but one, congenital hypothyroidism, have well-defined genes and inheritance patterns, so it is beneficial to incorporate molecular testing in NBS when it is necessary and appropriate. Indeed, the applications of molecular technologies have taken NBS to previously uncharted territory. In this paper, based on our own program experience and what has been reported in the literature, we describe current practices regarding the applications of molecular technologies in routine NBS practice in the era of genomic and precision medicine. Full article
Show Figures

Figure 1

17 pages, 1265 KiB  
Review
Use of Dried Blood Spot Specimens to Monitor Patients with Inherited Metabolic Disorders
by Stuart J. Moat, Roanna S. George and Rachel S. Carling
Int. J. Neonatal Screen. 2020, 6(2), 26; https://doi.org/10.3390/ijns6020026 - 26 Mar 2020
Cited by 52 | Viewed by 10257
Abstract
Monitoring of patients with inherited metabolic disorders (IMDs) using dried blood spot (DBS) specimens has been routinely used since the inception of newborn screening (NBS) for phenylketonuria in the 1960s. The introduction of flow injection analysis tandem mass spectrometry (FIA–MS/MS) in the 1990s [...] Read more.
Monitoring of patients with inherited metabolic disorders (IMDs) using dried blood spot (DBS) specimens has been routinely used since the inception of newborn screening (NBS) for phenylketonuria in the 1960s. The introduction of flow injection analysis tandem mass spectrometry (FIA–MS/MS) in the 1990s facilitated the expansion of NBS for IMDs. This has led to increased identification of patients who require biochemical monitoring. Monitoring of IMD patients using DBS specimens is widely favoured due to the convenience of collecting blood from a finger prick onto filter paper devices in the patient’s home, which can then be mailed directly to the laboratory. Ideally, analytical methodologies with a short analysis time and high sample throughput are required to enable results to be communicated to patients in a timely manner, allowing prompt therapy adjustment. The development of ultra-performance liquid chromatography (UPLC–MS/MS), means that metabolic laboratories now have the capability to routinely analyse DBS specimens with superior specificity and sensitivity. This advancement in analytical technology has led to the development of numerous assays to detect analytes at low concentrations (pmol/L) in DBS specimens that can be used to monitor IMD patients. In this review, we discuss the pre-analytical, analytical and post-analytical variables that may affect the final test result obtained using DBS specimens used for monitoring of patients with an IMD. Full article
Show Figures

Figure 1

Other

Jump to: Research, Review

8 pages, 209 KiB  
Commentary
Universal Implementation of Newborn Screening in India
by Thomas Mookken
Int. J. Neonatal Screen. 2020, 6(2), 24; https://doi.org/10.3390/ijns6020024 - 25 Mar 2020
Cited by 30 | Viewed by 4546
Abstract
Newborn screening is a successful program in many developed countries. In India, the benefits of dried blood spot screening have been recognized and that screening is slowly gaining traction. There are significant issues standing in the way of universal implementation of a newborn [...] Read more.
Newborn screening is a successful program in many developed countries. In India, the benefits of dried blood spot screening have been recognized and that screening is slowly gaining traction. There are significant issues standing in the way of universal implementation of a newborn screening program in India: awareness, cost, advocacy, public policy, and politics. Three regional screening programs, Chandigarh, Goa, and Kerala could serve as models for other programs in India. The data for this commentary were based on personal experiences from managing public newborn screening programs, searches on PubMed and Google, and personal interactions with experts in the field. The overwhelming recommendation is to universally screen for congenital hypothyroidism in India, because it is easy and inexpensive to treat, with excellent outcomes. It would also be beneficial to consider screening universally for glucose-6-phosphate dehydrogenase deficiency due to its high incidence and ease of treatment. Finally, sickle cell disease should be screened in those areas in India where it is prevalent due to the costs associated with universal screening. Achieving universal screening is a challenge, and it is very difficult to predict when every baby born in India will be screened for at least congenital hypothyroidism. Full article
Back to TopTop