-
Enhancing Deforestation Detection Through Multi-Domain Adaptation with Uncertainty Estimation
-
A Standardized Framework to Estimate Drought-Induced Vulnerability and Its Temporal Variation in Woody Plants Based on Growth
-
Carbon Flux Modeling with the Calibrated Biome-BGCMuSo in China’s Tropical Forests: Natural and Rubber-Planted Forests
Journal Description
Forests
Forests
is an international, peer-reviewed, open access journal on forestry and forest ecology published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), Ei Compendex, GEOBASE, PubAg, AGRIS, PaperChem, and other databases.
- Journal Rank: JCR - Q2 (Forestry) / CiteScore - Q1 (Forestry)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 17.1 days after submission; acceptance to publication is undertaken in 2.4 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Testimonials: See what our editors and authors say about Forests.
Impact Factor:
2.5 (2024);
5-Year Impact Factor:
2.7 (2024)
Latest Articles
Multi-Elemental Analysis for the Determination of the Geographic Origin of Tropical Timber from the Brazilian Legal Amazon
Forests 2025, 16(8), 1284; https://doi.org/10.3390/f16081284 (registering DOI) - 6 Aug 2025
Abstract
Illegal logging is a major threat to tropical forests; however, control mechanisms and efforts to combat illegal logging have not effectively curbed fraud in the production chain, highlighting the need for effective methods to verify the geographic origin of timber. This study investigates
[...] Read more.
Illegal logging is a major threat to tropical forests; however, control mechanisms and efforts to combat illegal logging have not effectively curbed fraud in the production chain, highlighting the need for effective methods to verify the geographic origin of timber. This study investigates the application of multi-elemental analysis combined with Principal Component Analysis (PCA) to discriminate the provenance of tropical timber in the Brazilian Legal Amazon. Wood samples of Hymenaea courbaril L. (Jatobá), Handroanthus sp. (Ipê), and Manilkara huberi (Ducke) A. Chevalier. (Maçaranduba) were taken from multiple sites. Elemental concentrations were determined via Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and CA was applied to evaluate geographic differentiation. Significant differences in elemental profiles were found among locations, particularly when using the intermediate disk portions (25% to 75%), and especially the average of all five sampled portions, which proved most effective in geographic discrimination of the trunk. Elements such as Ca, Sr, Cr, Cu, Zn, and B were especially important for spatial discrimination. These findings underscore the forensic potential of multi-elemental wood profiling as a tool to support law enforcement and environmental monitoring by providing scientifically grounded evidence of timber origin.
Full article
(This article belongs to the Section Wood Science and Forest Products)
►
Show Figures
Open AccessArticle
Forests and Green Transition Policy Frameworks: How Do Forest Carbon Stocks Respond to Bioenergy and Green Agricultural Technologies?
by
Nguyen Hoang Dieu Linh and Liang Lizhi
Forests 2025, 16(8), 1283; https://doi.org/10.3390/f16081283 - 6 Aug 2025
Abstract
Forests play a crucial role in storing excess carbon released into the atmosphere. By mitigating climate change, forest carbon stocks play a vital role in achieving green transitions. However, limited information is available regarding the factors that affect forest carbon stocks. The primary
[...] Read more.
Forests play a crucial role in storing excess carbon released into the atmosphere. By mitigating climate change, forest carbon stocks play a vital role in achieving green transitions. However, limited information is available regarding the factors that affect forest carbon stocks. The primary objective of this analysis is to investigate the impact of green agricultural technologies and bioenergy on forest carbon stocks. The empirical investigation was conducted using the method of moments quantile regression (MMQR) technique. Results using the MMQR approach indicate that bioenergy is beneficial in augmenting forest carbon stores at all levels. A 1% increase in bioenergy is associated with an increase in forest carbon stocks ranging from 3.100 at the 10th quantile to 1.599 at the 90th quantile. In the context of developing economies, similar findings are observed; however, in developed economies, bioenergy only fosters forest carbon stocks at lower and middle quantiles. In contrast, green agricultural technologies have an adverse effect on forest carbon stocks. Green agricultural technologies have a significant negative impact on forest carbon stocks, particularly between the 10th and 80th quantiles, with their influence declining in magnitude from −2.398 to −0.619. This negative connection is observed in both developed and developing countries at most quantiles, except for higher quantiles in developed economies. Gross domestic product (GDP) has an adverse effect on forest carbon stores only in developing countries, whereas human capital diminishes forest carbon stocks in both developed and developing nations. Governments should provide support for the creators of bioenergy and agroforestry technologies so that forest carbon stocks can be increased.
Full article
(This article belongs to the Special Issue Economic Assessment Research in Agroforestry Products, Environmental, and Renewable Resources Issues)
►▼
Show Figures

Figure 1
Open AccessArticle
Large-Scale Spatiotemporal Patterns of Burned Areas and Fire-Driven Mortality in Boreal Forests (North America)
by
Wendi Zhao, Qingchen Zhu, Qiuling Chen, Xiaohan Meng, Kexu Song, Diego I. Rodriguez-Hernandez, Manuel Esteban Lucas-Borja, Demetrio Antonio Zema, Tong Zhang and Xiali Guo
Forests 2025, 16(8), 1282; https://doi.org/10.3390/f16081282 - 6 Aug 2025
Abstract
Due to climate effects and human influences, wildfire regimes in boreal forests are changing, leading to profound ecological consequences, including shortened fire return intervals and elevated tree mortality. However, a critical knowledge gap exists concerning the spatiotemporal dynamics of fire-induced tree mortality specifically
[...] Read more.
Due to climate effects and human influences, wildfire regimes in boreal forests are changing, leading to profound ecological consequences, including shortened fire return intervals and elevated tree mortality. However, a critical knowledge gap exists concerning the spatiotemporal dynamics of fire-induced tree mortality specifically within the vast North American boreal forest, as previous studies have predominantly focused on Mediterranean and tropical forests. Therefore, in this study, we used satellite observation data obtained by the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra MCD64A1 and related database data to study the spatial and temporal variability in burned area and forest mortality due to wildfires in North America (Alaska and Canada) over an 18-year period (2003 to 2020). By calculating the satellite reflectance data before and after the fire, fire-driven forest mortality is defined as the ratio of the area of forest loss in a given period relative to the total forest area in that period, i.e., the area of forest loss divided by the total forest area. Our findings have shown average values of burned area and forest mortality close to 8000 km2/yr and 40%, respectively. Burning and tree loss are mainly concentrated between May and September, with a corresponding temporal trend in the occurrence of forest fires and high mortality. In addition, large-scale forest fires were primarily concentrated in Central Canada, which, however, did not show the highest forest mortality (in contrast to the results recorded in Northern Canada). Critically, based on generalized linear models (GLMs), the results showed that fire size and duration, but not the burned area, had significant effects on post-fire forest mortality. Overall, this study shed light on the most sensitive forest areas and time periods to the detrimental effects of forest wildfire in boreal forests of North America, highlighting distinct spatial and temporal vulnerabilities within the boreal forest and demonstrating that fire regimes (size and duration) are primary drivers of ecological impact. These insights are crucial for refining models of boreal forest carbon dynamics, assessing ecosystem resilience under changing fire regimes, and informing targeted forest management and conservation strategies to mitigate wildfire impacts in this globally significant biome.
Full article
(This article belongs to the Special Issue Forest Disturbance and Management)
►▼
Show Figures

Figure 1
Open AccessArticle
The Performance of a Novel Automated Algorithm in Estimating Truckload Volume Based on LiDAR Data
by
Mihai Daniel Niţă, Cătălin Cucu-Dumitrescu, Bogdan Candrea, Bogdan Grama, Iulian Iuga and Stelian Alexandru Borz
Forests 2025, 16(8), 1281; https://doi.org/10.3390/f16081281 - 5 Aug 2025
Abstract
Significant improvements in the forest-based industrial sector are expected due to increased digitalization; however, examples of practical implementations remain limited. This study explores the use of an automated algorithm to estimate truckload volumes based on 3D point cloud data acquired using two different
[...] Read more.
Significant improvements in the forest-based industrial sector are expected due to increased digitalization; however, examples of practical implementations remain limited. This study explores the use of an automated algorithm to estimate truckload volumes based on 3D point cloud data acquired using two different LiDAR scanning platforms. This research compares the performance of a professional mobile laser scanning (MLS GeoSLAM) platform and a smartphone-based iPhone LiDAR system. A total of 48 truckloads were measured using a combination of manual, factory-based, and digital approaches. Accuracy was evaluated using standard error metrics, including the mean absolute error (MAE) and root mean square error (RMSE), with manual or factory references used as benchmarks. The results showed a strong correlation and no significant differences between the algorithmic and manual measurements when using the MLS platform (MAE = 2.06 m3; RMSE = 2.46 m3). For the iPhone platform, the results showed higher deviations and significant overestimation compared to the factory reference (MAE = 3.29 m3; RMSE = 3.60 m3). Despite these differences, the iPhone platform offers real-time acquisition and low-cost deployment. These findings highlight the trade-offs between precision and operational efficiency and support the adoption of automated measurement tools in timber supply chains.
Full article
(This article belongs to the Section Forest Operations and Engineering)
Open AccessArticle
Forest Volume Estimation in Secondary Forests of the Southern Daxing’anling Mountains Using Multi-Source Remote Sensing and Machine Learning
by
Penghao Ji, Wanlong Pang, Rong Su, Runhong Gao, Pengwu Zhao, Lidong Pang and Huaxia Yao
Forests 2025, 16(8), 1280; https://doi.org/10.3390/f16081280 - 5 Aug 2025
Abstract
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have
[...] Read more.
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have limitations in capturing forest vertical height information and may suffer from reflectance saturation. While LiDAR data can provide more detailed vertical structural information, they come with high processing costs and limited observation range. Therefore, improving the accuracy of volume estimation through multi-source data fusion has become a crucial challenge and research focus in the field of forest remote sensing. In this study, we integrated Sentinel-2 multispectral data, Resource-3 stereoscopic imagery, UAV-based LiDAR data, and field survey data to quantitatively estimate the forest volume in Saihanwula Nature Reserve, located in Inner Mongolia, China, on the southern part of Daxing’anling Mountains. The study evaluated the performance of multi-source remote sensing features by using recursive feature elimination (RFE) to select the most relevant factors and applied four machine learning models—multiple linear regression (MLR), k-nearest neighbors (kNN), random forest (RF), and gradient boosting regression tree (GBRT)—to develop volume estimation models. The evaluation metrics include the coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (rRMSE). The results show that (1) forest Canopy Height Model (CHM) data were strongly correlated with forest volume, helping to alleviate the reflectance saturation issues inherent in spectral texture data. The fusion of CHM and spectral data resulted in an improved volume estimation model with R2 = 0.75 and RMSE = 8.16 m3/hm2, highlighting the importance of integrating multi-source canopy height information for more accurate volume estimation. (2) Volume estimation accuracy varied across different tree species. For Betula platyphylla, we obtained R2 = 0.71 and RMSE = 6.96 m3/hm2; for Quercus mongolica, R2 = 0.74 and RMSE = 6.90 m3/hm2; and for Populus davidiana, R2 = 0.51 and RMSE = 9.29 m3/hm2. The total forest volume in the Saihanwula Reserve ranges from 50 to 110 m3/hm2. (3) Among the four machine learning models, GBRT consistently outperformed others in all evaluation metrics, achieving the highest R2 of 0.86, lowest RMSE of 9.69 m3/hm2, and lowest rRMSE of 24.57%, suggesting its potential for forest biomass estimation. In conclusion, accurate estimation of forest volume is critical for evaluating forest management practices and timber resources. While this integrated approach shows promise, its operational application requires further external validation and uncertainty analysis to support policy-relevant decisions. The integration of multi-source remote sensing data provides valuable support for forest resource accounting, economic value assessment, and monitoring dynamic changes in forest ecosystems.
Full article
(This article belongs to the Special Issue Mapping and Modeling Forests Using Geospatial Technologies)
►▼
Show Figures

Figure 1
Open AccessArticle
CatBoost-Optimized Hyperspectral Modeling for Accurate Prediction of Wood Dyeing Formulations
by
Xuemei Guan, Rongkai Xue, Zhongsheng He, Shibin Chen and Xiangya Chen
Forests 2025, 16(8), 1279; https://doi.org/10.3390/f16081279 - 5 Aug 2025
Abstract
This study proposes a CatBoost-enhanced hyperspectral modeling approach for accurate prediction of wood dyeing formulations. Using Pinus sylvestris var. mongolica veneer as the substrate, 306 samples with gradient dye concentrations were prepared, and their reflectance spectra (400–700 nm) were acquired. After noise reduction
[...] Read more.
This study proposes a CatBoost-enhanced hyperspectral modeling approach for accurate prediction of wood dyeing formulations. Using Pinus sylvestris var. mongolica veneer as the substrate, 306 samples with gradient dye concentrations were prepared, and their reflectance spectra (400–700 nm) were acquired. After noise reduction and sensitive band selection (400–450 nm, 550–600 nm, and 600–650 nm), spectral descriptors were extracted as model inputs. The CatBoost algorithm, optimized via k-fold cross-validation and grid search, outperformed XGBoost, random forest, and SVR in prediction accuracy, achieving MSE = 0.00271 and MAE = 0.0349. Scanning electron microscopy (SEM) revealed the correlation between dye particle distribution and spectral response, validating the model’s physical basis. This approach enables intelligent dye formulation control in industrial wood processing, reducing color deviation (ΔE < 1.75) and dye waste by approximately 25%.
Full article
(This article belongs to the Section Wood Science and Forest Products)
►▼
Show Figures

Figure 1
Open AccessEditorial
Biodiversity, Health, and Ecosystem Services of Mangroves
by
Waseem Razzaq Khan, Abdul Latiff Mohamad and Faridah Hanum Ibrahim
Forests 2025, 16(8), 1278; https://doi.org/10.3390/f16081278 - 5 Aug 2025
Abstract
Mangroves, situated at the interface between land and sea, are among the most ecologically productive and economically valuable ecosystems in the world [...]
Full article
(This article belongs to the Special Issue Biodiversity, Health, and Ecosystem Services of Mangroves)
Open AccessArticle
Vegetation Succession Dynamics in the Deglaciated Area of the Zepu Glacier, Southeastern Tibet
by
Dan Yang, Naiang Wang, Xiao Liu, Xiaoyang Zhao, Rongzhu Lu, Hao Ye, Xiaojun Liu and Jinqiao Liu
Forests 2025, 16(8), 1277; https://doi.org/10.3390/f16081277 - 4 Aug 2025
Abstract
Bare land exposed by glacier retreat provides new opportunities for ecosystem development. Investigating primary vegetation succession in deglaciated regions can provide significant insights for ecological restoration, particularly for future climate change scenarios. Nonetheless, research on this topic in the Qinghai–Tibet Plateau has been
[...] Read more.
Bare land exposed by glacier retreat provides new opportunities for ecosystem development. Investigating primary vegetation succession in deglaciated regions can provide significant insights for ecological restoration, particularly for future climate change scenarios. Nonetheless, research on this topic in the Qinghai–Tibet Plateau has been exceedingly limited. This study aimed to investigate vegetation succession in the deglaciated area of the Zepu glacier during the Little Ice Age in southeastern Tibet. Quadrat surveys were performed on arboreal communities, and trends in vegetation change were assessed utilizing multi-year (1986–2024) remote sensing data. The findings indicate that vegetation succession in the Zepu glacier deglaciated area typically adheres to a sequence of bare land–shrub–tree, divided into four stages: (1) shrub (species include Larix griffithii Mast., Hippophae rhamnoides subsp. yunnanensis Rousi, Betula utilis D. Don, and Populus pseudoglauca C. Wang & P. Y. Fu); (2) broadleaf forest primarily dominated by Hippophae rhamnoides subsp. yunnanensis Rousi; (3) mixed coniferous–broadleaf forest with Hippophae rhamnoides subsp. yunnanensis Rousi and Populus pseudoglauca C. Wang & P. Y. Fu as the dominant species; and (4) mixed coniferous–broadleaf forest dominated by Picea likiangensis (Franch.) E. Pritz. Soil depth and NDVI both increase with succession. Species diversity is significantly higher in the third stage compared to other successional stages. In addition, soil moisture content is significantly greater in the broadleaf-dominated communities than in the conifer-dominated communities. An analysis of NDVI from 1986 to 2024 reveals an overall positive trend in vegetation recovery in the area, with 93% of the area showing significant vegetation increase. Temperature is the primary controlling factor for this recovery, showing a positive correlation with vegetation cover. The results indicate that Key ecological indicators—including species composition, diversity, NDVI, soil depth, and soil moisture content—exhibit stage-specific patterns, reflecting distinct phases of primary succession. These findings enhance our comprehension of vegetation succession in deglaciated areas and their influencing factors in deglaciated areas, providing theoretical support for vegetation restoration in climate change.
Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Application of a DPSIR-Based Causal Framework for Sustainable Urban Riparian Forests: Insights from Text Mining and a Case Study in Seoul
by
Taeheon Choi, Sangin Park and Joonsoon Kim
Forests 2025, 16(8), 1276; https://doi.org/10.3390/f16081276 - 4 Aug 2025
Abstract
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and
[...] Read more.
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and sentence classification to 1001 abstracts from previous studies, structured within the DPSIR (Driver–Pressure–State–Impact–Response) model. The analysis identified six dominant thematic clusters—water quality, ecosystem services, basin and land use management, climate-related stressors, anthropogenic impacts, and greenhouse gas emissions—which reflect the multifaceted concerns surrounding urban riparian forest research. These themes were synthesized into a structured causal model that illustrates how urbanization, land use, and pollution contribute to ecological degradation, while also suggesting potential restoration pathways. To validate its applicability, the framework was applied to four major urban streams in Seoul, where indicator-based analysis and correlation mapping revealed meaningful linkages among urban drivers, biodiversity, air quality, and civic engagement. Ultimately, by integrating large-scale text mining with causal inference modeling, this study offers a transferable approach to support adaptive planning and evidence-based decision-making under the uncertainties posed by climate change.
Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
►▼
Show Figures

Figure 1
Open AccessArticle
Soil Quality Indicators for Different Land Uses in the Ecuadorian Amazon Rainforest
by
Thony Huera-Lucero, Antonio Lopez-Piñeiro and Carlos Bravo-Medina
Forests 2025, 16(8), 1275; https://doi.org/10.3390/f16081275 - 4 Aug 2025
Abstract
Deforestation and land-use changes lead to significant soil degradation and erosion, particularly in Amazonian ecosystems, due to the region’s climate and geology. This study characterizes soil quality using physical, chemical, and biological parameters across different land uses. It uses a soil quality index
[...] Read more.
Deforestation and land-use changes lead to significant soil degradation and erosion, particularly in Amazonian ecosystems, due to the region’s climate and geology. This study characterizes soil quality using physical, chemical, and biological parameters across different land uses. It uses a soil quality index (SQI) based on a minimum data set (MDS), from 19 evaluated parameters. The land uses evaluated were cacao monoculture (CMC), agroforestry systems associated with fruit and timber species (FAFS and TAFS, respectively), and a secondary forest. The SQI was composed of six variables, bulk density (BD), soil organic matter (SOM), urease activity (UR), pH, dehydrogenase activity (DH), and leaf litter, which are considered relevant indicators that allow for an adequate evaluation of soil quality. According to the SQI assessment, FAFS has a moderate-quality rating (0.40), followed by secondary forest (0.35), TAFS (0.33), and CMC (0.30), the last three categorized as low-quality. The methods used are replicable and efficient for evaluating changes in soil properties based on different land uses and management systems in landscapes similar to those of the Ecuadorian Amazon. Also worth mentioning is the potential of agroforestry as a sustainable land-use strategy that can enhance above- and below-ground biodiversity and nutrient cycling. Therefore, implementing agroforestry practices can contribute to long-term soil conservation and the resilience of tropical ecosystems.
Full article
(This article belongs to the Special Issue Forest Soil Physical, Chemical, and Biological Properties)
►▼
Show Figures

Figure 1
Open AccessArticle
Do Forest Carbon Offset Projects Bring Biodiversity Conservation Co-Benefits? An Examination Based on Ecosystem Service Value
by
Qi Wang, Yuan Hu, Rui Chen, Weizhong Zeng and Ying Cheng
Forests 2025, 16(8), 1274; https://doi.org/10.3390/f16081274 - 4 Aug 2025
Abstract
In the context of worsening climate change and biodiversity loss, forest carbon offset projects are viewed as important nature-based solutions to mitigate these trends. However, there is limited evidence on whether these projects provide net benefits for biodiversity conservation. This study uses a
[...] Read more.
In the context of worsening climate change and biodiversity loss, forest carbon offset projects are viewed as important nature-based solutions to mitigate these trends. However, there is limited evidence on whether these projects provide net benefits for biodiversity conservation. This study uses a staggered difference-in-differences model with balanced panel data from 128 counties in Sichuan Province, China, spanning from 2000 to 2020, to examine whether these projects bring biodiversity conservation co-benefits. The results show that the implementation of forest carbon offset projects leads to a 55.1% decrease in the ecosystem service value of forest biodiversity, with the negative impact particularly pronounced in areas facing agricultural land use and livestock pressures. The dynamic effect tests indicate that the benefits of biodiversity conservation generally begin to decline significantly 5 years after project implementation. Additional analyses show that although projects certified under biodiversity conservation standards also exhibit negative effects, the magnitude of decline is substantially smaller compared to uncertified projects, and certified projects achieve greater carbon stock gains. Heterogeneity analysis demonstrates that projects employing native tree species show significant positive effects. Moreover, spatial econometric results demonstrate significant negative spillover effects within an 80 km radius surrounding the project sites, with the effect attenuating over distance. To maximize the potential of forest carbon offset projects in addressing both climate change and biodiversity loss, it is important to mitigate the negative impacts on biodiversity within and beyond project boundaries and to enhance the continuous monitoring of projects that have been certified for biodiversity conservation.
Full article
(This article belongs to the Special Issue Economic Assessment Research in Agroforestry Products, Environmental, and Renewable Resources Issues)
►▼
Show Figures

Figure 1
Open AccessArticle
Who Shapes What We Should Do in Urban Green Spaces? An Investigation of Subjective Norms in Pro-Environmental Behavior in Tehran
by
Rahim Maleknia, Aureliu-Florin Hălălișan and Kosar Maleknia
Forests 2025, 16(8), 1273; https://doi.org/10.3390/f16081273 - 4 Aug 2025
Abstract
Understanding the social drivers of pro-environmental behavior in urban forests and green spaces is critical for addressing sustainability challenges. Subjective norms serve as a key pathway through which social expectations influence individuals’ behavioral intentions. Despite mixed findings in the literature regarding the impact
[...] Read more.
Understanding the social drivers of pro-environmental behavior in urban forests and green spaces is critical for addressing sustainability challenges. Subjective norms serve as a key pathway through which social expectations influence individuals’ behavioral intentions. Despite mixed findings in the literature regarding the impact of subjective norms on individuals’ intentions, there is a research gap about the determinants of this construct. This study was conducted to explore how social expectations shape perceived subjective norms among visitors of urban forests. A theoretical model was developed with subjective norms at its center, incorporating their predictors including social identity, media influence, interpersonal influence, and institutional trust, personal norms as a mediator, and behavioral intention as the outcome variable. Using structural equation modeling, data was collected and analyzed from a sample of visitors of urban forests in Tehran, Iran. The results revealed that subjective norms play a central mediating role in linking external social factors to behavioral intention. Social identity emerged as the strongest predictor of subjective norms, followed by media and interpersonal influence, while institutional trust had no significant effect. Subjective norms significantly influenced both personal norms and intentions, and personal norms also directly predicted intention. The model explained 50.9% of the variance in subjective norms and 39.0% in behavioral intention, highlighting its relatively high explanatory power. These findings underscore the importance of social context and internalized norms in shaping sustainable behavior. Policy and managerial implications suggest that strategies should prioritize community-based identity reinforcement, media engagement, and peer influence over top-down institutional messaging. This study contributes to environmental psychology and the behavior change literature by offering an integrated, empirically validated model. It also provides practical guidance for designing interventions that target both social and moral dimensions of environmental action.
Full article
(This article belongs to the Special Issue Forest Management Planning and Decision Support)
►▼
Show Figures

Figure 1
Open AccessArticle
Kennaugh Elements Allow Early Detection of Bark Beetle Infestation in Temperate Forests Using Sentinel-1 Data
by
Christine Hechtl, Sarah Hauser, Andreas Schmitt, Marco Heurich and Anna Wendleder
Forests 2025, 16(8), 1272; https://doi.org/10.3390/f16081272 - 3 Aug 2025
Abstract
Climate change is generally having a negative impact on forest health by inducing drought stress and favouring the spread of pest species, such as bark beetles. The terrestrial monitoring of bark beetle infestation is very time-consuming, especially in the early stages, and therefore
[...] Read more.
Climate change is generally having a negative impact on forest health by inducing drought stress and favouring the spread of pest species, such as bark beetles. The terrestrial monitoring of bark beetle infestation is very time-consuming, especially in the early stages, and therefore not feasible for extensive areas, emphasising the need for a comprehensive approach based on remote sensing. Although numerous studies have researched the use of optical data for this task, radar data remains comparatively underexplored. Therefore, this study uses the weekly and cloud-free acquisitions of Sentinel-1 in the Bavarian Forest National Park. Time series analysis within a Multi-SAR framework using Random Forest enables the monitoring of moisture content loss and, consequently, the assessment of tree vitality, which is crucial for the detection of stress conditions conducive to bark beetle outbreaks. High accuracies are achieved in predicting future bark beetle infestation (R2 of 0.83–0.89). These results demonstrate that forest vitality trends ranging from healthy to bark beetle-affected states can be mapped, supporting early intervention strategies. The standard deviation of 0.44 to 0.76 years indicates that the model deviates on average by half a year, mainly due to the uncertainty in the reference data. This temporal uncertainty is acceptable, as half a year provides a sufficient window to identify stressed forest areas and implement targeted management actions before bark beetle damage occurs. The successful application of this technique to extensive test sites in the state of North Rhine-Westphalia proves its transferability. For the first time, the results clearly demonstrate the expected relationship between radar backscatter expressed in the Kennaugh elements K0 and K1 and bark beetle infestation, thereby providing an opportunity for the continuous and cost-effective monitoring of forest health from space.
Full article
(This article belongs to the Section Forest Health)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Wildfires and Palm Species Response in a Terra Firme Amazonian Social Forest
by
Tinayra T. A. Costa, Vynicius B. Oliveira, Maria Fabíola Barros, Fernando W. C. Andrade, Marcelo Tabarelli and Ima C. G. Vieira
Forests 2025, 16(8), 1271; https://doi.org/10.3390/f16081271 - 3 Aug 2025
Abstract
Tropical forests continue to experience high levels of habitat loss and degradation, with wildfires becoming a frequent component of human-modified landscapes. Here we investigate the response of palm species to the conversion of old-growth forests to successional mosaics, including forest patches burned during
[...] Read more.
Tropical forests continue to experience high levels of habitat loss and degradation, with wildfires becoming a frequent component of human-modified landscapes. Here we investigate the response of palm species to the conversion of old-growth forests to successional mosaics, including forest patches burned during wildfires. Palms (≥50 cm height) were recorded once in 2023–2024, across four habitat classes: terra firme old-growth stands, regenerating forest stands associated with slash-and-burn agriculture, old-growth stands burned once and twice, and active cassava fields, in the Tapajós-Arapiuns Extractive Reserve, in the eastern Brazilian Amazon. The flammability of palm leaf litter and forest litter were also examined to assess the potential connections between palm proliferation and wildfires. A total of 10 palm species were recorded in this social forest (including slash-and-burn agriculture and resulting successional mosaics), with positive, negative, and neutral responses to land use. Species richness did not differ among forest habitats, but absolute palm abundance was greatest in disturbed habitats. Only Attalea spectabilis Mart. (curuá) exhibited increased relative abundance across disturbed habitats, including active cassava field. Attalea spectabilis accounted for almost 43% of all stems in the old-growth forest, 89% in regenerating forests, 90% in burned forests, and 79% in crop fields. Disturbed habitats supported a five-to-ten-fold increment in curuá leaves as a measure of habitat flammability. Although curuá litter exhibited lower flame temperature and height, its lower carbon and higher volatile content is expected to be more sensitive to fire ignition and promote the spread of wildfires. The conversion of old-growth forests into social forests promotes the establishment of palm-dominated forests, increasing the potential for a forest transition further fueled by wildfires, with effects on forest resilience and social reproduction still to be understood.
Full article
(This article belongs to the Special Issue Ecosystem-Disturbance Interactions in Forests)
►▼
Show Figures

Figure 1
Open AccessArticle
Non-Structural Carbohydrate Concentration Increases and Relative Growth Decreases with Tree Size in the Long-Lived Agathis australis (D.Don) Lindl.
by
Julia Kaplick, Benjamin M. Cranston and Cate Macinnis-Ng
Forests 2025, 16(8), 1270; https://doi.org/10.3390/f16081270 - 3 Aug 2025
Abstract
The southern conifer Agathis australis (D.Don) Lindl. is a large and long-lived species endemic to Aotearoa New Zealand. It is threatened due to past logging activities, pathogen attack and potentially climate change, with increasing severity and frequency of drought and heatwaves across its
[...] Read more.
The southern conifer Agathis australis (D.Don) Lindl. is a large and long-lived species endemic to Aotearoa New Zealand. It is threatened due to past logging activities, pathogen attack and potentially climate change, with increasing severity and frequency of drought and heatwaves across its distribution. Like many large tree species, little is known about the carbon dynamics of this ecologically and culturally significant species. We explored seasonal variations in non-structural carbohydrates (NSCs) and growth in trees ranging from 20 to 175 cm diameter at breast height (DBH). NSCs were seasonally stable with no measurable pattern across seasons. However, we found growth rates standardised to basal area and sapwood area (growth efficiency) declined with tree age and stem NSC concentrations (including total NSCs, sugars and starch) all increased as trees aged. Total NSC concentrations were 0.3%–0.6% dry mass for small trees and 0.8%–1.8% dry mass for larger trees, with strong relationships between DBH and total NSC, sugar and starch in stems but not roots. Cumulative growth efficiency across the two-year study period declined as tree size increased. Furthermore, there was an inverse relationship between growth efficiency across the two-year study period and NSC concentrations of stems. This relationship was driven by differences in carbon dynamics in trees of different sizes, with trees progressing to a more conservative carbon strategy as they aged. Simultaneously declining growth efficiency and increasing NSC concentrations as trees age could be evidence for active NSC accumulation to buffer against carbon starvation in larger trees. Our study provides new insights into changing carbon dynamics as trees age and may be evidence for active carbon accumulation in older trees. This may provide the key for understanding the role of carbon processes in tree longevity.
Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
►▼
Show Figures

Figure 1
Open AccessArticle
Legacy and Luxury Effects: Dual Drivers of Tree Diversity Dynamics in Beijing’s Urbanizing Residential Areas (2006–2021)
by
Xi Li, Jicun Bao, Yue Li, Jijie Wang, Wenchao Yan and Wen Zhang
Forests 2025, 16(8), 1269; https://doi.org/10.3390/f16081269 - 3 Aug 2025
Abstract
Numerous studies have demonstrated that in residential areas of Western cities, both luxury and legacy effects significantly shape tree species diversity dynamics. However, the specific mechanisms driving these diversity patterns in China, where urbanization has progressed at an unprecedented pace, remain poorly understood.
[...] Read more.
Numerous studies have demonstrated that in residential areas of Western cities, both luxury and legacy effects significantly shape tree species diversity dynamics. However, the specific mechanisms driving these diversity patterns in China, where urbanization has progressed at an unprecedented pace, remain poorly understood. In this study we selected 20 residential settlements and 7 key socio-economic properties to investigate the change trend of tree diversity (2006–2021) and its socio-economic driving factors in Beijing. Our results demonstrate significant increases in total, native, and exotic tree species richness between 2006 and 2021 (p < 0.05), with average increases of 36%, 26%, and 55%, respectively. Total and exotic tree Shannon-Wiener indices, as well as exotic tree Simpson’s index, were also significantly higher in 2021 (p < 0.05). Housing prices was the dominant driver shaping total and exotic tree diversity, showing significant positive correlations with both metrics. In contrast, native tree diversity exhibited a strong positive association with neighborhood age. Our findings highlight two dominant mechanisms: legacy effect, where older neighborhoods preserve native diversity through historical planting practices, and luxury effect, where affluent communities drive exotic species proliferation through ornamental landscaping initiatives. These findings elucidate the dual dynamics of legacy conservation and luxury-driven cultivation in urban forest development, revealing how historical contingencies and contemporary socioeconomic forces jointly shape tree diversity patterns in urban ecosystems.
Full article
(This article belongs to the Section Urban Forestry)
►▼
Show Figures

Figure 1
Open AccessArticle
Soil C:N:P Stoichiometry in Two Contrasting Urban Forests in the Guangzhou Metropolis: Differences and Related Dominates
by
Yongmei Xiong, Zhiqi Li, Shiyuan Meng and Jianmin Xu
Forests 2025, 16(8), 1268; https://doi.org/10.3390/f16081268 - 3 Aug 2025
Abstract
Carbon (C) sequestration and nitrogen (N) and phosphorus (P) accumulation in urban forest green spaces are significant for global climate regulation and alleviating nutrient pollution. However, the effects of management and conservation practices across different urban forest vegetation types on soil C, N,
[...] Read more.
Carbon (C) sequestration and nitrogen (N) and phosphorus (P) accumulation in urban forest green spaces are significant for global climate regulation and alleviating nutrient pollution. However, the effects of management and conservation practices across different urban forest vegetation types on soil C, N, and P contents and stoichiometric ratios remain largely unexplored. We selected forest soils from Guangzhou, a major Metropolis in China, as our study area. Soil samples were collected from two urban secondary forests that naturally regenerated after disturbance (108 samples) and six urban forest parks primarily composed of artificially planted woody plant communities (72 samples). We employed mixed linear models and variance partitioning to analyze and compare soil C, N, and P contents and their stoichiometry and its main driving factors beneath suburban forests and urban park vegetation. These results exhibited that soil pH and bulk density in urban parks were higher than those in suburban forests, whereas soil water content, maximum storage capacity, and capillary porosity were higher in urban forests than in urban parks. Soil C, N, and P contents and their stoichiometry (except for N:P ratio) were significantly higher in suburban forests than in urban parks. Multiple analyzes showed that soil pH had the most pronounced negative influence on soil C, N, C:N, C:P, and N:P, but the strongest positive influence on soil P in urban parks. Soil water content had the strongest positive effect on soil C, N, P, C:N, and C:P, while soil N:P was primarily influenced by the positive effect of soil non-capillary porosity in suburban forests. Overall, our study emphasizes that suburban forests outperform urban parks in terms of carbon and nutrient accumulation, and urban green space management should focus particularly on the impact of soil pH and moisture content on soil C, N, and P contents and their stoichiometry.
Full article
(This article belongs to the Special Issue Carbon, Nitrogen, and Phosphorus Storage and Cycling in Forest Soil)
►▼
Show Figures

Figure 1
Open AccessArticle
Xylem Functional Anatomy of Pure-Species and Interspecific Hybrid Clones of Eucalyptus Differing in Drought Resistance
by
José Gándara, Matías Nión, Silvia Ross, Jaime González-Tálice, Paolo Tabeira and María Elena Fernández
Forests 2025, 16(8), 1267; https://doi.org/10.3390/f16081267 - 2 Aug 2025
Abstract
Climate extremes threaten the resilience of Eucalyptus plantations, yet hybridization with drought-tolerant species may enhance stress tolerance. This study analyzed xylem anatomical and functional drought responses in commercial Eucalyptus grandis (GG) clones and hybrids: E. grandis × camaldulensis (GC), E. grandis × tereticornis
[...] Read more.
Climate extremes threaten the resilience of Eucalyptus plantations, yet hybridization with drought-tolerant species may enhance stress tolerance. This study analyzed xylem anatomical and functional drought responses in commercial Eucalyptus grandis (GG) clones and hybrids: E. grandis × camaldulensis (GC), E. grandis × tereticornis (GT), and E. grandis × urophylla (GU1, GU2). We evaluated vessel traits (water transport), fibers (mechanical support), and wood density (D) in stems and branches. Theoretical stem hydraulic conductivity (kStheo), vessel lumen fraction (F), vessel composition (S), and associations with previous hydraulic and growth data were assessed. While general drought responses occurred, GC had the most distinct xylem profile. This may explain it having the highest performance in different irrigation conditions. Red gum hybrids (GC, GT) maintained kStheo under drought, with stable F and a narrower vessel size, especially in branches. Conversely, GG and GU2 reduced F and S; and stem kStheo declined for a similar F in these clones, indicating vascular reconfiguration aligning the stem with the branch xylem. Almost all clones increased D under drought in any organ, with the highest increase in red gum hybrids. These results reveal diverse anatomical adjustments to drought among clones, partially explaining their growth responses.
Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
►▼
Show Figures

Graphical abstract
Open AccessReview
Arbuscular Mycorrhizal Fungi in the Ecological Restoration of Tropical Forests: A Bibliometric Review
by
Yajaira Arévalo, María Eugenia Avila-Salem, Paúl Loján, Narcisa Urgiles-Gómez, Darwin Pucha-Cofrep, Nikolay Aguirre and César Benavidez-Silva
Forests 2025, 16(8), 1266; https://doi.org/10.3390/f16081266 - 2 Aug 2025
Abstract
Arbuscular mycorrhizal fungi (AMF) play a vital role in the restoration of tropical forests by enhancing soil fertility, facilitating plant establishment, and improving ecosystem resilience. This study presents a comprehensive bibliometric analysis of global scientific output on AMF in the context of ecological
[...] Read more.
Arbuscular mycorrhizal fungi (AMF) play a vital role in the restoration of tropical forests by enhancing soil fertility, facilitating plant establishment, and improving ecosystem resilience. This study presents a comprehensive bibliometric analysis of global scientific output on AMF in the context of ecological restoration, based on 3835 publications indexed in the Web of Science and Scopus databases from 2001 to 2024. An average annual growth rate of approximately 9.45% was observed, with contributions from 10,868 authors across 880 journals. The most prominent journals included Mycorrhiza (3.34%), New Phytologist (3.00%), and Applied Soil Ecology (2.79%). Thematically, dominant research areas encompassed soil–plant interactions, phytoremediation, biodiversity, and microbial ecology. Keyword co-occurrence analysis identified “arbuscular mycorrhizal fungi,” “diversity,” “soil,” and “plant growth” as core topics, while emerging topics such as rhizosphere interactions and responses to abiotic stress showed increasing prominence. Despite the expanding body of literature, key knowledge gaps remain, particularly concerning AMF–plant specificity, long-term restoration outcomes, and integration of microbial community dynamics. These findings offer critical insights into the development of AMF research and underscore its strategic importance in tropical forest restoration, providing a foundation for future studies and informing ecosystem management policies.
Full article
(This article belongs to the Section Forest Biodiversity)
►▼
Show Figures

Figure 1
Open AccessArticle
Effects of Different Phosphorus Addition Levels on Physiological and Growth Traits of Pinus massoniana (Masson Pine) Seedlings
by
Zhenya Yang and Hui Wang
Forests 2025, 16(8), 1265; https://doi.org/10.3390/f16081265 - 2 Aug 2025
Abstract
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive
[...] Read more.
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive strategies of Masson pine to different soil P levels, focusing on root morphological–architectural plasticity and the allocation dynamics of nutrient elements and photosynthetic assimilates. One-year-old potted Masson pine seedlings were exposed to four P addition treatments for one year: P0 (0 mg kg−1), P1 (25 mg kg−1), P2 (50 mg·kg−1), and P3 (100 mg kg−1). In July and December, measurements were conducted on seedling organ biomass, root morphological indices [root length (RL), root surface area (RSA), root diameter (RD), specific root length (SRL), and root length ratio (RLR) for each diameter grade], root architectural indices [number of root tips (RTs), fractal dimension (FD), root branching angle (RBA), and root topological index (TI)], as well as the content of nitrogen (N), phosphorus (P), carbon (C), and non-structural carbohydrates (NSCs) in roots, stems, and leaves. Compared with the P0 treatment, P2 and P3 significantly increased root biomass, root–shoot ratio, RL, RSA, RTs, RLR of finer roots (diameter ≤ 0.4 mm), nutrient accumulation ratio in roots, and starch (ST) content in roots, stems and leaves. Meanwhile, they decreased soluble sugar (SS) content, SS/ST ratio, C and N content, and N/P and C/P ratios in stems and leaves, as well as nutrient accumulation ratio in leaves. The P3 treatment significantly reduced RBA and increased FD and SRL. Our results indicated that Masson pine adapts to low P by developing shallower roots with a reduced branching intensity and promoting the conversion of ST to SS. P’s addition effectively alleviates growth limitations imposed by low P, stimulating root growth, branching, and gravitropism. Although a sole P addition promotes short-term growth and P uptake, it triggers a substantial consumption of N, C, and SS, leading to significant decreases in N/P and C/P ratios and exacerbating N’s limitation, which is detrimental to long-term growth. Under high-P conditions, Masson pine strategically prioritizes allocating limited N and SS to roots, facilitating the formation of thinner roots with low C costs.
Full article
(This article belongs to the Special Issue Adaptive Mechanisms of Tree Seedlings to Adapt to Stress—Second Edition)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Forests Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Climate, Diversity, Forests, Plants, Sustainability, Earth
Responses of Trees and Forests to Climate Change
Topic Editors: Qinglai Dang, Ilona Mészáros, Lei WangDeadline: 30 August 2025
Topic in
Diversity, Forests, Genes, IJPB, Plants
Plant Chloroplast Genome and Evolution
Topic Editors: Chao Shi, Lassaâd Belbahri, Shuo WangDeadline: 31 August 2025
Topic in
Agriculture, Agronomy, Forests, Remote Sensing, Sustainability
Challenges, Development and Frontiers of Smart Agriculture and Forestry—2nd Volume
Topic Editors: Xiaoli Zhang, Dengsheng Lu, Xiujuan Chai, Guijun Yang, Langning HuoDeadline: 30 September 2025
Topic in
Economies, Forests, Land, Smart Cities, Urban Science, Sustainability
Sustainable Investments in Urban, Peri-Urban and Industrial Areas: Novel Approaches and Methods
Topic Editors: Francesco Sica, Elena Di Pirro, Maria Rosaria Sessa, Francesco Tajani, Maria Rosaria Guarini, Alessio Russo, Debora AnelliDeadline: 31 October 2025

Conferences
Special Issues
Special Issue in
Forests
Specialized Metabolites and Structure of Woody Plants
Guest Editors: Zorica S. Mitić, Dalibor BallianDeadline: 15 August 2025
Special Issue in
Forests
Before and After the Flames: An Ecological Examination of the Factors That Influence Forest Fire Effects and Post-Fire Recovery and Resilience
Guest Editor: John N. WilliamsDeadline: 15 August 2025
Special Issue in
Forests
Social and Cultural Benefits of Forests Contributing to Human Health and Well-Being
Guest Editors: Kangning Xiong, Xiaofang Zhou, Mingjun LiDeadline: 20 August 2025
Special Issue in
Forests
Long-Term Monitoring and Driving Forces of Forest Cover
Guest Editors: Jianwan Ji, Bing Guo, Eshetu Shifaw, Rui ZhangDeadline: 20 August 2025
Topical Collections
Topical Collection in
Forests
Forests Carbon Fluxes and Sequestration
Collection Editor: Mark Harmon
Topical Collection in
Forests
Forest Sustainable Management in Europe
Collection Editor: Ignacio Diaz-Maroto
Topical Collection in
Forests
Historical Wood: Structure, Properties and Conservation
Collection Editor: Magdalena Broda
Topical Collection in
Forests
Reviews and Meta-Analyses in Forest Meteorology and Climate Change
Collection Editors: Giacomo Alessandro Gerosa, Riccardo Marzuoli